Home
Class 12
MATHS
If f(x)=|(a, -1, 0), (ax, a,-1 ) ,(ax^(2...

If `f(x)`=`|(a, -1, 0), (ax, a,-1 ) ,(ax^(2), ax, a)|`, then `f(2x)-f(x)` is divisible by
1) `a`
2) `b`
3) `c ,d ,e`
4). none of these

A

x

B

a

C

`2a+3x`

D

`x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant function \( f(x) \) and then find \( f(2x) - f(x) \). We will also check the divisibility of the resulting expression. ### Step 1: Define the determinant function We start with the function defined as: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix} \] ### Step 2: Perform row operations We will perform row operations to simplify the determinant. 1. **Row Operation 1**: Replace \( R_3 \) with \( R_3 - x \cdot R_2 \): \[ R_3 \rightarrow R_3 - xR_2 \] This gives us: \[ R_3 = (ax^2 - x \cdot a, ax - x \cdot a, a - (-1)x) = (ax^2 - ax, ax - ax, a + x) = (a(x - 1)x, 0, a + x) \] 2. **Row Operation 2**: Replace \( R_2 \) with \( R_2 - x \cdot R_1 \): \[ R_2 \rightarrow R_2 - xR_1 \] This gives us: \[ R_2 = (ax - ax, a - (-1)x, -1 - 0) = (0, a + x, -1) \] Now the determinant looks like this: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ 0 & a + x & -1 \\ a(x - 1)x & 0 & a + x \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula, we can calculate \( f(x) \): \[ f(x) = a \begin{vmatrix} a + x & -1 \\ 0 & a + x \end{vmatrix} - (-1) \begin{vmatrix} 0 & -1 \\ a(x - 1)x & a + x \end{vmatrix} \] Calculating the first determinant: \[ = a((a + x)(a + x) - 0) = a(a + x)^2 \] Calculating the second determinant: \[ = -1(0 - (-1)(a(x - 1)x)) = a(x - 1)x \] Thus, \[ f(x) = a(a + x)^2 + a(x - 1)x \] ### Step 4: Calculate \( f(2x) \) Now we need to calculate \( f(2x) \): \[ f(2x) = a(a + 2x)^2 + a(2x - 1)(2x) \] ### Step 5: Find \( f(2x) - f(x) \) Now we compute \( f(2x) - f(x) \): \[ f(2x) - f(x) = a(a + 2x)^2 + a(2x - 1)(2x) - (a(a + x)^2 + a(x - 1)x) \] ### Step 6: Factor the expression After simplification, we factor out common terms: \[ = a \cdot x \cdot (2a + 3x) \] ### Step 7: Check divisibility Now we check the divisibility of \( f(2x) - f(x) \): - The expression \( a \cdot x \cdot (2a + 3x) \) is divisible by \( a \) and \( x \). ### Conclusion Thus, the correct options for divisibility are: 1) \( a \) 2) \( x \) 3) \( 2a + 3x \)

To solve the problem, we need to evaluate the determinant function \( f(x) \) and then find \( f(2x) - f(x) \). We will also check the divisibility of the resulting expression. ### Step 1: Define the determinant function We start with the function defined as: \[ f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)-ax , then f(a)=

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

If f(x)=sqrt(ax)+(a^2)/(sqrt(ax)) , then f^ (a)=

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to (a) 0 (b) 1/e (c) e (d) none of these

Let f(x)={(e^x-1+ax)/x^2, x>0 and b, x=0 and sin(x/2)/x , x<0 , then

If 2f(x)-3f(1/x)=x^2(x!=0), then f(2) is equal to (a) -7/4("b")""5/2 (c) -1 (d) none of these

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If f(x) = 2x^4 - 13 x^2 + ax +b is divisible by x^2 -3x +2 then (a,b)=

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. If f(x)=|(a, -1, 0), (ax, a,-1 ) ,(ax^(2), ax, a)|, then f(2x)-f(x) is...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |