Home
Class 12
MATHS
Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd...

`Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}|` is independent of

A

a

B

b

C

c,d,e

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem step by step, we will analyze the determinant and simplify it. The determinant is given as: \[ \Delta = \begin{vmatrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{vmatrix} \] ### Step 1: Apply Column Operations We will perform column operations to simplify the determinant. Specifically, we will subtract the first column from the second and third columns. \[ \Delta = \begin{vmatrix} 1 & (1 + ac) - 1 & (1 + bc) - 1 \\ 1 & (1 + ad) - 1 & (1 + bd) - 1 \\ 1 & (1 + ae) - 1 & (1 + be) - 1 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 & ac & bc \\ 1 & ad & bd \\ 1 & ae & be \end{vmatrix} \] ### Step 2: Factor Out Common Terms Next, we can factor out common terms from the second and third columns. We will take 'a' out from the second column and 'b' out from the third column. \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & d & b \\ 1 & e & e \end{vmatrix} \cdot ab \] ### Step 3: Evaluate the Determinant Now, we can evaluate the determinant: \[ \Delta = ab \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & d & b \\ 1 & e & e \end{vmatrix} \] Notice that the first row is identical, which means the determinant will be zero: \[ \Delta = 0 \] ### Conclusion Thus, we conclude that the value of the determinant \(\Delta\) is independent of \(a\), \(b\), \(c\), \(d\), and \(e\). The determinant is zero. ### Final Answer The determinant \(\Delta\) is independent of \(a\), \(b\), \(c\), \(d\), and \(e\). ---

To solve the given determinant problem step by step, we will analyze the determinant and simplify it. The determinant is given as: \[ \Delta = \begin{vmatrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

|{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

if theta in R then maximum value of Delta =|{:(1,,1,,1),(1 ,,1+sintheta,,1),(1 ,, 1,,1+cos theta):}| is

If A, B and C denote the angles of a triangle, then Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)| is independent of

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

Evalute the determinat Delta=|{:(1,3,-1),(0,1,2),(1,2,3):}|

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is indepe...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |