Home
Class 12
MATHS
" if " Delta = |{:(-x,,a,,b),(b,,-x,...

` " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a factor of " Delta " is "`

A

`a+b+x`

B

`x^(2)-(a-b)x+a^(2)+b^(2)+ab`

C

`x^(2)+(a+b)x+a^(2)+b^(2)-ab`

D

`a+b-x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find a factor of the determinant \( \Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} \). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ \Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} \] 2. **Apply Column Operations**: We can simplify the determinant by applying the operation \( C_1 \to C_1 + C_2 + C_3 \): \[ C_1 = -x + a + b, \quad C_2 = a, \quad C_3 = b \] This gives us: \[ \Delta = \begin{vmatrix} a + b - x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} \] 3. **Row Operations**: Next, we perform row operations to simplify further. We can apply \( R_2 \to R_2 - R_1 \) and \( R_3 \to R_3 - R_1 \): \[ R_2 = \begin{pmatrix} b - (a + b - x) & -x - a & a - b \end{pmatrix} = \begin{pmatrix} -a + x & -x - a & a - b \end{pmatrix} \] \[ R_3 = \begin{pmatrix} a - (a + b - x) & b - a & -x - b \end{pmatrix} = \begin{pmatrix} -b + x & b - a & -x - b \end{pmatrix} \] So, we have: \[ \Delta = \begin{vmatrix} a + b - x & a & b \\ -a + x & -x - a & a - b \\ -b + x & b - a & -x - b \end{vmatrix} \] 4. **Factor Out Common Terms**: We can factor out \( a + b - x \) from the first row: \[ \Delta = (a + b - x) \begin{vmatrix} 1 & a & b \\ -a + x & -x - a & a - b \\ -b + x & b - a & -x - b \end{vmatrix} \] 5. **Expand the Determinant**: Now, we can expand the determinant along the first row. This will yield a polynomial in terms of \( x \). 6. **Final Factorization**: After performing the expansion and simplification, we will find that: \[ \Delta = (a + b - x)(x^2 + (a + b)x + (a^2 + b^2 - ab)) \] Therefore, one of the factors of \( \Delta \) is \( a + b - x \). ### Conclusion: The factor of \( \Delta \) is \( a + b - x \).

To solve the given problem, we need to find a factor of the determinant \( \Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} \). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ \Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)| , then

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

" If " Delta_(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta_(2)= |{:(x,,b),(a,,x):}| are the given determinants then

The factors of |(x,a,b),(a,x,b),(a,b,x)| , are

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

Delta = |(a +x,b,c),(b,x +c,a),(c,a,x +b)| . Which of the following is a factor for the above determinant ?

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

if Delta (x)= |{:(a_(1)+x,,b_(1)+x,,c_(1)+x),(a_(2)+x,,b_(2)+x,,c_(2)+x),(a_(3)+x,,b_(3)+x,,c_(3)+x):}| then show that Delta (x)=0 and that Delta (x)=Delta(0)+sx. where s denotes the sum of all the cofactors of all the elements in Delta (0)

If x-2 is a factor of x^(2)+6x+16b , then b =

If x ,y ,z are different from zero and "Delta"=|[a, b-y ,c-z],[ a-x, b ,c-z],[ a-x, b-y, c]|=0, then the value of the expression a/x+b/y+c/z is a. 0 b. -1 c. 1 d. 2

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |