Home
Class 12
MATHS
the determinant Delta=|[a^2+x, ab, ac] ,...

the determinant `Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]|` is divisible by

A

x

B

`x^(2)`

C

`x^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \) and determine its divisibility by \( x \), \( x^2 \), or \( x^3 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] ### Step 2: Multiply the First Column by \( a \) We multiply the first column by \( a \): \[ \Delta = a \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] ### Step 3: Apply Column Transformation Next, we perform a column transformation by changing \( C_1 \) to \( C_1 + bC_2 + cC_3 \): \[ \Delta = a \begin{vmatrix} a^3 + ax + ab^2 + ac^2 & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] ### Step 4: Factor Out Common Terms Now, we can factor out common terms from the first column: \[ \Delta = a \cdot (a^2 + b^2 + c^2 + x) \begin{vmatrix} 1 & b & c \\ b & 0 & 0 \\ c & 0 & 0 \end{vmatrix} \] ### Step 5: Calculate the Remaining Determinant Now we calculate the remaining determinant: \[ \begin{vmatrix} 1 & b & c \\ b & 0 & 0 \\ c & 0 & 0 \end{vmatrix} = 1 \cdot (0 \cdot 0 - 0 \cdot 0) - b(0 \cdot 0 - c \cdot 0) + c(b \cdot 0 - 0 \cdot 0) = 0 \] Thus, the determinant simplifies to: \[ \Delta = (a^2 + b^2 + c^2 + x) \cdot 0 = 0 \] ### Step 6: Conclusion on Divisibility Since \( \Delta = 0 \), it is divisible by any power of \( x \), including \( x \), \( x^2 \), and \( x^3 \). ### Final Answer The determinant \( \Delta \) is divisible by \( x \), \( x^2 \), and \( x^3 \).

To solve the determinant \( \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \) and determine its divisibility by \( x \), \( x^2 \), or \( x^3 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The determinant "det(A)"= |[ a^(2) +x,ab,ac], [ab, b^(2) +x,bc,] [ac,bc, c^(2) +x]| is divisible by a. x b. x^2 c. x^3 d. none of these

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Using properties of determinant, if |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = mua^2b^2c^2 , find mu

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |