Home
Class 12
MATHS
|(a, a^2, 0), (1, 2a+b ,(a+b)), (0, 1, ...

`|(a, a^2, 0), (1, 2a+b ,(a+b)), (0, 1, 2a+3b)|` is divisible by
a. `a+b`
b. `a+2b`
c. `2a+3b`
d. `a^2`

A

`a+b `

B

`a+2b`

C

`2a+3b`

D

`a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem, we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} a & a^2 & 0 \\ 1 & 2a + b & a + b \\ 0 & 1 & 2a + 3b \end{vmatrix} \] ### Step 2: Factor out 'a' from the first row We can factor out \( a \) from the first row: \[ D = a \cdot \begin{vmatrix} 1 & a & 0 \\ 1 & 2a + b & a + b \\ 0 & 1 & 2a + 3b \end{vmatrix} \] ### Step 3: Perform Row Operations Next, we perform the row operation \( R_2 \leftarrow R_2 - R_1 \): \[ D = a \cdot \begin{vmatrix} 1 & a & 0 \\ 0 & (2a + b - a) & (a + b - 0) \\ 0 & 1 & 2a + 3b \end{vmatrix} \] This simplifies to: \[ D = a \cdot \begin{vmatrix} 1 & a & 0 \\ 0 & (a + b) & (a + b) \\ 0 & 1 & 2a + 3b \end{vmatrix} \] ### Step 4: Factor out \( (a + b) \) from the second row Now, we can factor out \( (a + b) \) from the second row: \[ D = a(a + b) \cdot \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2a + 3b \end{vmatrix} \] ### Step 5: Perform another row operation Next, we perform the row operation \( R_3 \leftarrow R_3 - R_2 \): \[ D = a(a + b) \cdot \begin{vmatrix} 1 & a & 0 \\ 0 & 1 & 1 \\ 0 & 0 & (2a + 3b - 1) \end{vmatrix} \] ### Step 6: Calculate the determinant The determinant simplifies to: \[ D = a(a + b)(2a + 3b - 1) \] ### Step 7: Identify divisibility From the expression \( D = a(a + b)(2a + 3b - 1) \), we can see that \( D \) is divisible by \( a \) and \( a + b \). ### Conclusion Thus, the determinant is divisible by: - \( a \) - \( a + b \)

To solve the determinant problem, we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} a & a^2 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

/_\=|(a,a^2,0),(1,2a+b,a+b),(0,1,2a+3b)| is divisible by a+b b. a+2b c. 2a+3b d. a^2

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a, b, c are real and x^3-3b^2x+2c^3 is divisible by x -a and x - b, then (a) a =-b=-c (c) a = b = c or a =-2b-_ 2c (b) a = 2b = 2c (d) none of these

a^2b^3\ X\ 2a b^2 is equal to: (a) 2a^3b^4 (b) 2a^3b^5 (c) 2a b (d) a^3b^5

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

If a=2b ,\ then a : b= (a) 2:1 (b) 1:2 (c) 3:4 (d) 4:3

If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then a=-2 b. a=2,b=1 c. b=-1 d. b=1

Let A +2B=[[1, 2, 0],[ 6,-3, 3],[-5, 3, 1] ] and 2A-B=[[2,-1, 5 ],[2,-1, 6],[ 0, 1, 2]] . Then T r(B) has the value equal to a. 0 b. 1 c. 2 d. none

If a=-2 , b=-1 ,then a^(b)-b^(a) is equal to a) -1 b) 0.5 c) -2 d) -1.5

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. |(a, a^2, 0), (1, 2a+b ,(a+b)), (0, 1, 2a+3b)| is divisible by a. a...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |