Home
Class 12
MATHS
the roots of the equations |{:(.^(x)C(...

the roots of the equations `|{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0`

A

`x=n`

B

`x=n+1`

C

`x=n-1`

D

`x=n-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant: \[ \begin{vmatrix} {x \choose r} & {n-1 \choose r} & {n \choose r} \\ {x+1 \choose r} & {n \choose r} & {n+1 \choose r} \\ {x+2 \choose r} & {n+1 \choose r} & {n+2 \choose r} \end{vmatrix} = 0 \] we will follow these steps: ### Step 1: Write the Determinant We start by rewriting the determinant explicitly: \[ D = \begin{vmatrix} {x \choose r} & {n-1 \choose r} & {n \choose r} \\ {x+1 \choose r} & {n \choose r} & {n+1 \choose r} \\ {x+2 \choose r} & {n+1 \choose r} & {n+2 \choose r} \end{vmatrix} \] ### Step 2: Use the Binomial Coefficient Formula Recall that the binomial coefficient can be expressed as: \[ {x \choose r} = \frac{x!}{r!(x-r)!} \] Using this formula, we can rewrite each term in the determinant. ### Step 3: Substitute Values Substituting \(x = n\) into the determinant: \[ D(n) = \begin{vmatrix} {n \choose r} & {n-1 \choose r} & {n \choose r} \\ {n+1 \choose r} & {n \choose r} & {n+1 \choose r} \\ {n+2 \choose r} & {n+1 \choose r} & {n+2 \choose r} \end{vmatrix} \] ### Step 4: Identify Equal Columns Notice that the first and third columns are equal: \[ {n \choose r} = {n \choose r} \] Since two columns are equal, the determinant \(D(n) = 0\). ### Step 5: Substitute \(x = n - 1\) Now, substitute \(x = n - 1\): \[ D(n-1) = \begin{vmatrix} {n-1 \choose r} & {n-1 \choose r} & {n \choose r} \\ {n \choose r} & {n \choose r} & {n+1 \choose r} \\ {n+1 \choose r} & {n+1 \choose r} & {n+2 \choose r} \end{vmatrix} \] Again, the first and second columns are equal: \[ {n-1 \choose r} = {n-1 \choose r} \] Thus, \(D(n-1) = 0\). ### Step 6: Conclusion The roots of the equation are: \[ x = n \quad \text{and} \quad x = n - 1 \]

To solve the equation given by the determinant: \[ \begin{vmatrix} {x \choose r} & {n-1 \choose r} & {n \choose r} \\ {x+1 \choose r} & {n \choose r} & {n+1 \choose r} \\ {x+2 \choose r} & {n+1 \choose r} & {n+2 \choose r} \end{vmatrix} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

the value of the determinant |{:(.^(n)C_(r-1),,.^(n)C_(r),,(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),,.^(n)C_(r+1),,(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),,.^(n)C_(r+2),,(r+3)^(n+2)C_(r+3)):}| is

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are a) x=n b) x=n+1 c) x=n-1 d) x=n-2

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. the roots of the equations |{:(.^(x)C(r),,.^(n-1)C(r),,.^(n)C(r)),(....

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |