Home
Class 12
MATHS
" If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2))...

`" If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2)),(3x,,3x^(2)+2a^(2),,3x^(3)+6a^(2)x),(3x^(2)+2a^(2),,3x^(3)+6a^(2)x,,3x^(4)+12a^(2)x^(2)+2a^(4)):}|` then

A

f'(x)=0

B

y=f(x) is a straight line parallel to x-axis

C

`int_(0)^(2) f(x) dx=32 a^(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the function \( f(x) \), we will follow a systematic approach to simplify the determinant step by step. ### Step 1: Write the Determinant We start with the determinant defined as: \[ f(x) = \begin{vmatrix} 3 & 3x & 3x^2 + 2a^2 \\ 3x & 3x^2 + 2a^2 & 3x^3 + 6a^2x \\ 3x^2 + 2a^2 & 3x^3 + 6a^2x & 3x^4 + 12a^2x^2 + 2a^4 \end{vmatrix} \] ### Step 2: Apply Column Operations We will perform column operations to simplify the determinant. We can subtract \( x \) times the first column from the second column and \( x \) times the second column from the third column. \[ C_2 \rightarrow C_2 - xC_1 \] \[ C_3 \rightarrow C_3 - xC_2 \] After performing these operations, the determinant becomes: \[ f(x) = \begin{vmatrix} 3 & 0 & 3x^2 + 2a^2 - x(3x) \\ 3x & 0 & 3x^3 + 6a^2x - x(3x^2 + 2a^2) \\ 3x^2 + 2a^2 & 0 & 3x^4 + 12a^2x^2 + 2a^4 - x(3x^3 + 6a^2x) \end{vmatrix} \] ### Step 3: Simplify the Determinant Now we simplify the entries in the determinant. The second column becomes zero, and we can simplify the third column: \[ 3x^2 + 2a^2 - 3x^2 = 2a^2 \] \[ 3x^3 + 6a^2x - (3x^3 + 2a^2x) = 4a^2x \] \[ 3x^4 + 12a^2x^2 + 2a^4 - (3x^4 + 6a^2x^2) = 6a^2x^2 + 2a^4 \] Thus, we have: \[ f(x) = \begin{vmatrix} 3 & 0 & 2a^2 \\ 3x & 0 & 4a^2x \\ 3x^2 + 2a^2 & 0 & 6a^2x^2 + 2a^4 \end{vmatrix} \] ### Step 4: Factor Out Common Terms Next, we can factor out the common terms from the rows: \[ f(x) = 3 \cdot 0 \cdot \text{determinant} = 0 \] Since the second column is entirely zero, the determinant evaluates to zero. ### Step 5: Conclusion Thus, we conclude that: \[ f(x) = 0 \]

To solve the determinant given in the function \( f(x) \), we will follow a systematic approach to simplify the determinant step by step. ### Step 1: Write the Determinant We start with the determinant defined as: \[ f(x) = \begin{vmatrix} 3 & 3x & 3x^2 + 2a^2 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2a^2, 3x^3+6a^2x, 3x^4+12a^2x^2+2a^4]| then

int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=

factorise (i) 2x^(3)-3x^(2)-17x+30 (ii) x^(3) -6x^(2)+11x-6 (iii) x^(3)+x^(2)-4x-4 (iv) 3x^(2)-x^(2)-3x+1

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx

Add : 3x^(2)+5x-4, 2x+3-x^(2) and 8-3x+7x^(2) .

Subtract 6x^(3) -5x^(2)+4x-3 from the sum x+2x^(2)-3x^(3) and 2-x^(2)+6x-x^(3) .

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

The domain of f(x) = (x^(2))/(x^(2) - 3x + 2) is :

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. " If " f(x) = |{:(3,,3x,,3x^(2)+2a^(2)),(3x,,3x^(2)+2a^(2),,3x^(3)+6a...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |