Home
Class 12
MATHS
Let f (n) = |{:(n,,n+1,,n+2),(.^(n)P(n)...

Let `f (n) = |{:(n,,n+1,,n+2),(.^(n)P_(n),,.^(n+1)P_(n+1),,.^(n+2)P_(n+2)),(.^(n)C_(n),,.^(n+1)C_(n+1),,.^(n+2)C_(n+2)):}|` where the sysmbols have their usual neanings .then f(n) is divisible by

A

`n^(2)+n+1`

B

`(n+1)!`

C

`n!`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the function \( f(n) \) and determine its divisibility. Let's break it down step by step. ### Step 1: Write the Determinant We start with the determinant defined by the function: \[ f(n) = \begin{vmatrix} n & n+1 & n+2 \\ nP_n & (n+1)P_{n+1} & (n+2)P_{n+2} \\ nC_n & (n+1)C_{n+1} & (n+2)C_{n+2} \end{vmatrix} \] ### Step 2: Substitute Values Using the definitions of permutations and combinations: - \( nP_n = n! \) - \( (n+1)P_{n+1} = (n+1)! \) - \( (n+2)P_{n+2} = (n+2)! \) - \( nC_n = 1 \) - \( (n+1)C_{n+1} = 1 \) - \( (n+2)C_{n+2} = 1 \) We can rewrite the determinant as: \[ f(n) = \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! & (n+2)! \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Perform Row Operations To simplify the determinant, we can perform column operations: - Replace \( C_2 \) with \( C_2 - C_1 \) - Replace \( C_3 \) with \( C_3 - C_1 \) This gives us: \[ f(n) = \begin{vmatrix} n & n+1 & n+2 \\ n! & (n+1)! - n! & (n+2)! - n! \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 4: Simplify the Second Row Calculating the second row: - \( (n+1)! - n! = n! \cdot n \) - \( (n+2)! - n! = (n+2)(n+1)n! - n! = (n^2 + 3n + 2 - 1)n! = (n^2 + 3n + 1)n! \) Thus, we have: \[ f(n) = \begin{vmatrix} n & n+1 & n+2 \\ n! & n \cdot n! & (n^2 + 3n + 1)n! \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 5: Factor Out \( n! \) Now we can factor \( n! \) out of the second row: \[ f(n) = n! \begin{vmatrix} n & n+1 & n+2 \\ 1 & n & n^2 + 3n + 1 \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 6: Expand the Determinant Now we can expand this determinant: \[ = n! \left( n \begin{vmatrix} n & n+2 \\ 1 & 0 \end{vmatrix} - (n+1) \begin{vmatrix} 1 & n+2 \\ 1 & 0 \end{vmatrix} \right) \] Calculating the 2x2 determinants: - \( \begin{vmatrix} n & n+2 \\ 1 & 0 \end{vmatrix} = -n - 2 \) - \( \begin{vmatrix} 1 & n+2 \\ 1 & 0 \end{vmatrix} = - (n+2 - 1) = - (n+1) \) Thus, \[ f(n) = n! \left( n(-n - 2) + (n+1)(n+1) \right) \] ### Step 7: Final Simplification This simplifies to: \[ f(n) = n! \left( -n^2 - 2n + n^2 + 2n + 1 \right) = n! (n^2 + n + 1) \] ### Conclusion Thus, we conclude that: \[ f(n) = n! (n^2 + n + 1) \] Therefore, \( f(n) \) is divisible by \( n! \) and \( n^2 + n + 1 \).

To solve the problem, we need to evaluate the determinant given in the function \( f(n) \) and determine its divisibility. Let's break it down step by step. ### Step 1: Write the Determinant We start with the determinant defined by the function: \[ f(n) = \begin{vmatrix} n & n+1 & n+2 \\ nP_n & (n+1)P_{n+1} & (n+2)P_{n+2} \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let f(n)=|nn+1n+2^n P_n^(n+1)P_(n+1)^n P_n^n C_n^(n+1)C_(n+1)^(n+2)C_(n+2)| , where the symbols have their usual meanings. Then f(n) is divisible by n^2+n+1 b. (n+1)! c. n ! d. none of these

For each n in N, n(n+1) (2n+1) is divisible by

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

The greatest value of n for which the determinant Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))| is divisible by 3^(n) , is

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Let f (n) = |{:(n,,n+1,,n+2),(.^(n)P(n),,.^(n+1)P(n+1),,.^(n+2)P(n+2)...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |