Home
Class 12
MATHS
the determinant |{:(a,,b,,aalpha+b),(b,,...

the determinant `|{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha+c,,0):}|=0` is equal to zero if

A

a,b,c are in A.P

B

a,b,c are in G.P.

C

`alpha` is a root of the equation `ax^(2) +bx+c=0`

D

`(x-alpha)` is a factor fo `ax^(2) +2bx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \[ \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant explicitly: \[ D = \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} \] ### Step 2: Apply Column Operations We will perform column operations to simplify the determinant. Specifically, we will replace the third column \(C_3\) with \(C_3 - \alpha C_1 - C_2\): \[ C_3 \rightarrow C_3 - \alpha C_1 - C_2 \] This gives us: \[ D = \begin{vmatrix} a & b & (a\alpha + b) - \alpha a - b \\ b & c & (b\alpha + c) - \alpha b - c \\ a\alpha + b & b\alpha + c & 0 - \alpha(a\alpha + b) - (b\alpha + c) \end{vmatrix} \] ### Step 3: Simplify the Third Column Now we simplify each entry in the third column: 1. First row: \( (a\alpha + b) - \alpha a - b = 0 \) 2. Second row: \( (b\alpha + c) - \alpha b - c = 0 \) 3. Third row: \( 0 - \alpha(a\alpha + b) - (b\alpha + c) = -\alpha(a\alpha + b) - (b\alpha + c) \) Thus, the determinant becomes: \[ D = \begin{vmatrix} a & b & 0 \\ b & c & 0 \\ a\alpha + b & b\alpha + c & -\alpha(a\alpha + b) - (b\alpha + c) \end{vmatrix} \] ### Step 4: Factor Out Common Terms Now, we can factor out the common terms from the determinant. We can take out \(-\alpha(a\alpha + 2b + c)\) from the third column: \[ D = -\alpha(a\alpha + 2b + c) \begin{vmatrix} a & b & 1 \\ b & c & 1 \\ a\alpha + b & b\alpha + c & 1 \end{vmatrix} \] ### Step 5: Evaluate the Remaining Determinant The remaining determinant can be evaluated using the properties of determinants. We can expand it, but we will focus on the conditions for it to equal zero. ### Step 6: Set the Determinant Equal to Zero For the determinant \(D\) to be zero, either \(-\alpha(a\alpha + 2b + c) = 0\) or the remaining determinant must equal zero. 1. \(-\alpha = 0\) implies \(\alpha = 0\). 2. \(a\alpha + 2b + c = 0\) gives us a relationship between \(a\), \(b\), and \(c\). ### Step 7: Conclude with the Conditions From the determinant being zero, we can conclude that: - The values \(a\), \(b\), and \(c\) must satisfy \(b^2 = ac\) (indicating they are in geometric progression). - The polynomial \(a\alpha^2 + 2b\alpha + c = 0\) implies that \(\alpha\) is a root of this quadratic equation. ### Final Result Thus, the determinant is equal to zero if: 1. \(b^2 = ac\) (indicating \(a\), \(b\), \(c\) are in geometric progression). 2. \(\alpha\) is a root of the equation \(a\alpha^2 + 2b\alpha + c = 0\).

To solve the determinant equation \[ \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0, ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If the determinant |(a ,b,2aalpha+3b),(b, c,2balpha+3c),(2aalpha+3b,2balpha+3c,0)|=0 then (a) a , b , c are in H.P. (b) alpha is root of 4a x^2+12 b x+9c=0 or(c) a , b , c are in G.P. (d) a , b , c , are in G.P. only a , b ,c are in A.P.

If the determinant |[a,b,2aalpha+3b],[b,c,2balpha+3c],[2aalpha+3b,2balpha+3c,0]|=0 then (a) a , b , c are in H.P. alpha is root of 4a x^2+12 b x+9c=0 or a , b , c are in G.P. a , b , c , are in G.P. only a , b ,c are in A.P.

If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0 , then

The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)| is equal to zero, if

The determinant |a b aalpha+bb c balpha+c aalpha+bbalpha+c0|=0, if a ,b , c are in A.P. a ,b ,c are in G.P. a ,b ,c are in H.P. alpha is a root of the equation a x^2+b c+c=0 (x-alpha) is a factor of a x^2+2b x+c

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

The value of the determinant |{:(a, b,0), (0,a, b),(b,0,a):}| is equal to- a. a^3-b^3 b. a^3+b^3 c. 0 d. none of these

The value of the determinant |(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)| , is

If |{:(4,-4,0),(a,b+4,c),(a,b,c+4):}|=0 , then a+b+c is equal to

Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |