Home
Class 12
MATHS
" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,...

`" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|` where a,b,c are distinct positive reals then the possible values of abc is`//`are

A

`(1)/(18)`

B

`(1)/(63)`

C

`(1)/(27)`

D

`(1)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant equation: \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \\ \end{array} \right| = \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \\ \end{array} \right| \] we will evaluate both determinants step by step. ### Step 1: Evaluate the Left Determinant The left determinant is: \[ D_1 = \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \\ \end{array} \right| \] Using the properties of determinants, we can expand this determinant using the first row: \[ D_1 = 1 \cdot \left| \begin{array}{cc} b & c \\ ca & ab \\ \end{array} \right| - 1 \cdot \left| \begin{array}{cc} a & c \\ bc & ab \\ \end{array} \right| + 1 \cdot \left| \begin{array}{cc} a & b \\ bc & ca \\ \end{array} \right| \] Calculating each of these 2x2 determinants: 1. \(\left| \begin{array}{cc} b & c \\ ca & ab \\ \end{array} \right| = b(ab) - c(ca) = ab^2 - c^2a\) 2. \(\left| \begin{array}{cc} a & c \\ bc & ab \\ \end{array} \right| = a(ab) - c(bc) = a^2b - c^2b\) 3. \(\left| \begin{array}{cc} a & b \\ bc & ca \\ \end{array} \right| = a(ca) - b(bc) = a^2c - b^2c\) Putting it all together: \[ D_1 = (ab^2 - c^2a) - (a^2b - c^2b) + (a^2c - b^2c) \] Simplifying: \[ D_1 = ab^2 - c^2a - a^2b + c^2b + a^2c - b^2c \] ### Step 2: Evaluate the Right Determinant Now we evaluate the right determinant: \[ D_2 = \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \\ \end{array} \right| \] Using the same method as before: \[ D_2 = 1 \cdot \left| \begin{array}{cc} b & c \\ b^3 & c^3 \\ \end{array} \right| - 1 \cdot \left| \begin{array}{cc} a & c \\ a^3 & c^3 \\ \end{array} \right| + 1 \cdot \left| \begin{array}{cc} a & b \\ a^3 & b^3 \\ \end{array} \right| \] Calculating each of these 2x2 determinants: 1. \(\left| \begin{array}{cc} b & c \\ b^3 & c^3 \\ \end{array} \right| = b(c^3) - c(b^3) = bc^3 - cb^3 = (b - c)bc^2\) 2. \(\left| \begin{array}{cc} a & c \\ a^3 & c^3 \\ \end{array} \right| = a(c^3) - c(a^3) = ac^3 - ca^3 = (a - c)ac^2\) 3. \(\left| \begin{array}{cc} a & b \\ a^3 & b^3 \\ \end{array} \right| = a(b^3) - b(a^3) = ab^3 - ba^3 = (a - b)ab^2\) Putting it all together: \[ D_2 = (b - c)bc^2 - (a - c)ac^2 + (a - b)ab^2 \] ### Step 3: Set the Determinants Equal Now we set \(D_1 = D_2\): \[ ab^2 - c^2a - a^2b + c^2b + a^2c - b^2c = (b - c)bc^2 - (a - c)ac^2 + (a - b)ab^2 \] ### Step 4: Analyze the Result From the equality of determinants, we can derive relationships between \(a\), \(b\), and \(c\). Given that \(a\), \(b\), and \(c\) are distinct positive reals, we can apply the Arithmetic Mean-Geometric Mean Inequality (AM-GM): \[ \frac{a + b + c}{3} \geq \sqrt[3]{abc} \] ### Step 5: Solve for \(abc\) From the equality of the determinants, we can find that: \[ a + b + c = 1 \] Thus, \[ \frac{1}{3} \geq \sqrt[3]{abc} \] Cubing both sides gives: \[ \frac{1}{27} \geq abc \] Since \(a\), \(b\), and \(c\) are distinct positive reals, the maximum value of \(abc\) is less than \(\frac{1}{27}\). The possible values for \(abc\) from the given options are: - \(\frac{1}{18}\) - \(\frac{1}{63}\) - \(\frac{1}{27}\) - \(\frac{1}{9}\) The only feasible value that satisfies \(abc < \frac{1}{27}\) is: \[ abc = \frac{1}{63} \] ### Final Answer The possible value of \(abc\) is: \[ \boxed{\frac{1}{63}} \]

To solve the given determinant equation: \[ \left| \begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \\ \end{array} \right| = \left| \begin{array}{ccc} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If a, b, c are positive real numbers such that a+b+c=1 , then the greatest value of (1-a)(1-b)(1-c), is

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If matrix A =[{:( a,b,c),(b,c,a),(c,a,b) :}] where a,b,c are real positive number ,abc =1 and A^(T) A = I then Which of the following is/are true

If |{:(a,b,a),(b,c,1),(c,a,1):}|=2010 and if |{:(c-a,c-b,ab),(a-b,a-c,bc),(b-c,b-a,ca):}|-|{:(c-a,c-b,c^(2)),(a-b,a-c,a^(2)),(b-c,b-a,b^(2)):}|=p , then the number of positive divisors of p is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. " if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |