Home
Class 12
MATHS
|{:(.^(x)C(r),,.^(x)C(r+1),,.^(x)C(r+2))...

`|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x}{r+1} & \binom{x}{r+2} \\ \binom{y}{r} & \binom{y}{r+1} & \binom{y}{r+2} \\ \binom{z}{r} & \binom{z}{r+1} & \binom{z}{r+2} \end{vmatrix} \] we will perform a series of column operations and apply the known identity for binomial coefficients. ### Step 1: Perform Column Operations Let's perform the operation \( C_2 \to C_2 + C_1 \) and \( C_3 \to C_3 + C_1 \). After this operation, the determinant becomes: \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x}{r} + \binom{x}{r+1} & \binom{x}{r} + \binom{x}{r+2} \\ \binom{y}{r} & \binom{y}{r} + \binom{y}{r+1} & \binom{y}{r} + \binom{y}{r+2} \\ \binom{z}{r} & \binom{z}{r} + \binom{z}{r+1} & \binom{z}{r} + \binom{z}{r+2} \end{vmatrix} \] ### Step 2: Apply the Binomial Coefficient Identity Using the identity \( \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \), we can simplify the second and third columns: - For \( C_2 \): \[ \binom{x}{r} + \binom{x}{r+1} = \binom{x+1}{r+1} \] - For \( C_3 \): \[ \binom{x}{r} + \binom{x}{r+2} = \binom{x+1}{r+2} \] So, the determinant now looks like: \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x+1}{r+1} & \binom{x+1}{r+2} \\ \binom{y}{r} & \binom{y+1}{r+1} & \binom{y+1}{r+2} \\ \binom{z}{r} & \binom{z+1}{r+1} & \binom{z+1}{r+2} \end{vmatrix} \] ### Step 3: Repeat the Process Now, we can repeat the same process for the second column. Perform \( C_3 \to C_3 + C_2 \): After this operation, we have: \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x+1}{r+1} & \binom{x+1}{r+1} + \binom{x+1}{r+2} \\ \binom{y}{r} & \binom{y+1}{r+1} & \binom{y+1}{r+1} + \binom{y+1}{r+2} \\ \binom{z}{r} & \binom{z+1}{r+1} & \binom{z+1}{r+1} + \binom{z+1}{r+2} \end{vmatrix} \] Using the same identity again, we can simplify the third column: \[ \binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1} \] ### Final Result After applying the identity, we can conclude that the determinant simplifies to: \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x+1}{r+1} & \binom{x+2}{r+2} \\ \binom{y}{r} & \binom{y+1}{r+1} & \binom{y+2}{r+2} \\ \binom{z}{r} & \binom{z+1}{r+1} & \binom{z+2}{r+2} \end{vmatrix} \] ### Conclusion Thus, the determinant is equal to one of the options provided in the question. After checking through the options, we find that all four options are indeed correct.

To solve the determinant \[ D = \begin{vmatrix} \binom{x}{r} & \binom{x}{r+1} & \binom{x}{r+2} \\ \binom{y}{r} & \binom{y}{r+1} & \binom{y}{r+2} \\ \binom{z}{r} & \binom{z}{r+1} & \binom{z}{r+2} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

the value of the determinant |{:(.^(n)C_(r-1),,.^(n)C_(r),,(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),,.^(n)C_(r+1),,(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),,.^(n)C_(r+2),,(r+3)^(n+2)C_(r+3)):}| is

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Show that |[""^xC_r, ""^x C_(r+1),""^x C_(r+2)],[""^y C_r,""^y C_(r+1),""^y C_(r+2)],[""^z C_r,""^z C_(r+1),""^z C_(r+2)]|=|[""^(x)C_r, ""^(x+1) C_(r+1),""^(x+2) C_(r+2)],[""^y C_r,""^(y+1) C_(r+1),""^(y+2) C_(r+2)],[""^z C_r,""^(z+1) C_(r+1),""^(z+2) C_(r+2)]|

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. |{:(.^(x)C(r),,.^(x)C(r+1),,.^(x)C(r+2)),(.^(y)C(r),,.^(y)C(r+1),,.^(y...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |