Home
Class 12
MATHS
" If "|{:(sin theta cos phi,,sin theta s...

`" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}|`then

A

`Delta` is independent of theta

B

`Delta` is independent of `phi`

C

`Delta `is a constant

D

`[(dDelta)/d (theta)]_(theta=pi//2)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we will follow a step-by-step approach. The determinant is given as: \[ \Delta = \begin{vmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & \theta \end{vmatrix} \] ### Step 1: Perform Column Operation We will perform the column operation \( C_1 \leftarrow C_1 - \frac{\cos \phi}{\sin \phi} C_2 \). \[ C_1 = \sin \theta \cos \phi - \frac{\cos \phi}{\sin \phi} (\sin \theta \sin \phi) \] This simplifies to: \[ C_1 = \sin \theta \cos \phi - \cos \phi \sin \theta = 0 \] Thus, the first column becomes: \[ \begin{pmatrix} 0 \\ 0 \\ -\sin \theta \sin \phi \end{pmatrix} \] ### Step 2: Update the Determinant After the column operation, the determinant becomes: \[ \Delta = \begin{vmatrix} 0 & \sin \theta \sin \phi & \cos \theta \\ 0 & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & \theta \end{vmatrix} \] ### Step 3: Calculate the Determinant Since the first column is all zeros, we can expand the determinant along the first column: \[ \Delta = 0 \] ### Step 4: Analyze the Result Since the determinant evaluates to zero, it indicates that the determinant is independent of both \(\theta\) and \(\phi\). Therefore, we can conclude: 1. \(\Delta\) is independent of \(\theta\). 2. \(\Delta\) is independent of \(\phi\). 3. \(\Delta\) is a constant (specifically, zero). ### Step 5: Derivative with Respect to \(\theta\) To find \( \frac{d\Delta}{d\theta} \): \[ \frac{d\Delta}{d\theta} = 0 \] At \(\theta = \frac{\pi}{2}\), this is also zero. ### Conclusion The correct options are: - \(\Delta\) is independent of \(\phi\) - \(\frac{d\Delta}{d\theta} \text{ at } \theta = \frac{\pi}{2} = 0\)

To solve the given determinant problem, we will follow a step-by-step approach. The determinant is given as: \[ \Delta = \begin{vmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & \theta \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

(sin ( theta -phi))/(sin theta sin phi) = cot phi - cot theta.

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

if determinant |{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}| is

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

(sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If tan theta = p/q then (p sin theta - q cos theta)/(p sin theta + q cos theta)=

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. " If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta ...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |