Home
Class 12
MATHS
Consider the function f(x) = |{:(a^(2)+x...

Consider the function f(x) = `|{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}|`
In which of the following interval f(x) is strictly increasing

A

`(-oo ,oo)`

B

`(-oo ,0)`

C

`(0,oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the interval in which the function \( f(x) = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \) is strictly increasing, we will first compute the determinant and then analyze its behavior with respect to \( x \). ### Step 1: Compute the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \] ### Step 2: Expand the Determinant Using the properties of determinants, we can expand this determinant. We will use the first row for expansion: \[ \Delta = (a^2 + x) \begin{vmatrix} b^2 + x & bc \\ bc & c^2 + x \end{vmatrix} - ab \begin{vmatrix} ab & bc \\ ac & c^2 + x \end{vmatrix} + ac \begin{vmatrix} ab & b^2 + x \\ ac & bc \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now, we calculate the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} b^2 + x & bc \\ bc & c^2 + x \end{vmatrix} = (b^2 + x)(c^2 + x) - (bc)(bc) = (b^2 + x)(c^2 + x) - b^2c^2 \] 2. For the second determinant: \[ \begin{vmatrix} ab & bc \\ ac & c^2 + x \end{vmatrix} = ab(c^2 + x) - bc(ac) = abc^2 + abx - abc^2 = abx \] 3. For the third determinant: \[ \begin{vmatrix} ab & b^2 + x \\ ac & bc \end{vmatrix} = ab(bc) - ac(b^2 + x) = ab^2c - acb^2 - acx = ab^2c - acb^2 - acx \] ### Step 4: Substitute Back into the Determinant Now substituting back into the determinant: \[ \Delta = (a^2 + x)((b^2 + x)(c^2 + x) - b^2c^2) - ab(abx) + ac(ab^2c - acb^2 - acx) \] ### Step 5: Simplify the Expression After simplifying the expression, we will have a polynomial in \( x \). The function \( f(x) \) will be strictly increasing where its derivative \( f'(x) \) is positive. ### Step 6: Find the Derivative To find \( f'(x) \), we differentiate \( \Delta \) with respect to \( x \): \[ f'(x) = \frac{d}{dx} \Delta \] ### Step 7: Analyze the Sign of the Derivative We need to find the intervals where \( f'(x) > 0 \). This will involve solving the inequality derived from the expression of \( f'(x) \). ### Step 8: Identify the Interval After solving the inequality, we will determine the interval(s) where \( f(x) \) is strictly increasing. ### Conclusion Thus, the final answer will be the interval(s) where \( f(x) \) is strictly increasing based on the analysis of \( f'(x) \). ---

To determine the interval in which the function \( f(x) = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} \) is strictly increasing, we will first compute the determinant and then analyze its behavior with respect to \( x \). ### Step 1: Compute the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Show that the function f(x) = 2x+1 is strictly increasing on R.

The interval in which the function f(x)=x^(2)-4x+6 is strictly increasing is

On which of the following intervals in the function f(x)=2x^2-log|x|,xne0 increasing ?

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that " f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2)) .

The function f(x) = x^(2) e^(-x) strictly increases on

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(a...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |