Home
Class 12
MATHS
if x gt m,y gt n,z gt r (x,y,zgt 0) such...

if `x gt m,y gt n,z gt r (x,y,zgt 0)` such that `|{:(x,,n,,r),(m,,y,,r),(m,,n,,z):}|=0`
the value `(xyz)/((x-m)(y-n)(z-r))` is

A

27

B

`(8)/(27)`

C

`(64)/(27)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given determinant condition and work through the algebraic manipulations. ### Step-by-Step Solution: 1. **Given Condition**: We have the determinant \[ | \begin{vmatrix} x & n & r \\ m & y & r \\ m & n & z \end{vmatrix} | = 0 \] This means that the rows of the determinant are linearly dependent. 2. **Row Operations**: We perform row operations to simplify the determinant. - First, we perform the operation \( R_1 \leftarrow R_1 - R_2 \): \[ | \begin{vmatrix} x - m & n - y & r - r \\ m & y & r \\ m & n & z \end{vmatrix} | = 0 \] This simplifies to: \[ | \begin{vmatrix} x - m & n - y & 0 \\ m & y & r \\ m & n & z \end{vmatrix} | = 0 \] 3. **Second Row Operation**: Next, we perform \( R_2 \leftarrow R_2 - R_3 \): \[ | \begin{vmatrix} x - m & n - y & 0 \\ 0 & y - n & r - z \\ m & n & z \end{vmatrix} | = 0 \] 4. **Expanding the Determinant**: The determinant can be expanded: \[ (x - m) \cdot \begin{vmatrix} y - n & r - z \\ n & z \end{vmatrix} = 0 \] This means: \[ (x - m)( (y - n)z - (r - z)n) = 0 \] 5. **Setting the Factors to Zero**: Since \( x > m \), we must have: \[ (y - n)z - (r - z)n = 0 \] Rearranging gives: \[ (y - n)z = (r - z)n \] 6. **Finding the Value**: We need to find the value of \[ \frac{xyz}{(x - m)(y - n)(z - r)} \] From the previous step, we can express \( z \) in terms of \( y \) and \( n \): \[ z = \frac{(y - n)z + (r - z)n}{y - n} = \frac{(y - n)z + rn - zn}{y - n} \] This leads us to a relationship involving \( x, y, z, m, n, r \). 7. **Using AM-GM Inequality**: By applying the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we can derive: \[ \frac{x - m + y - n + z - r}{3} \geq \sqrt[3]{(x - m)(y - n)(z - r)} \] This leads to the conclusion that: \[ \frac{xyz}{(x - m)(y - n)(z - r)} \leq \frac{8}{27} \] 8. **Final Result**: Thus, the value of \[ \frac{xyz}{(x - m)(y - n)(z - r)} = \frac{8}{27} \] ### Conclusion: The value of \(\frac{xyz}{(x - m)(y - n)(z - r)}\) is \(\frac{8}{27}\).

To solve the problem step by step, we start with the given determinant condition and work through the algebraic manipulations. ### Step-by-Step Solution: 1. **Given Condition**: We have the determinant \[ | \begin{vmatrix} x & n & r \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

if x gt m,y gt n,z gt r (x,y,zgt 0) such that |{:(x,,n,,r),(m,,y,,r),(m,,n,,z):}|=0 the value of (m)/(x-m)+(n)/(y-n) +(z )/(z-r) is

If |{:(a,b,c),(m,n,p),(x,y,z):}|=k then thet value of |{:(6a,2b,2c),(3m,n,p),(3x,y,z):}|

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. The value of x^(-1)+y^(-1)+z^(-1) is

If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessarily.

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If |[p,q-y,r-z],[p-x,q,r-z],[p-x,q-y,r]|=0 find the value of p/x+q/y+r/z

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if x gt m,y gt n,z gt r (x,y,zgt 0) such that |{:(x,,n,,r),(m,,y,,r),(...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |