Home
Class 12
MATHS
f(x) = |{:(x+c(1),,x+a,,x+a),(x+b,,x+c(2...

`f(x) = |{:(x+c_(1),,x+a,,x+a),(x+b,,x+c_(2),,x+a),(x+b,,x+b,,x+c_(3)):}| " and " g(x)= (C_(1) -x)(c_(3)-x)`
Coefficient of x in f(x) is

A

`(g(a)-f(b))/(b-a)`

B

`(g(-a)-g(-b))/(b-a)`

C

`(g(a)-g(b))/(b-a)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x \) in the determinant function \( f(x) \), we will follow these steps: ### Step 1: Write the Determinant The function \( f(x) \) is given as: \[ f(x) = \begin{vmatrix} x + c_1 & x + b & x + b \\ x + c_2 & x + a & x + b \\ x + c_3 & x + a & x + a \end{vmatrix} \] ### Step 2: Apply Column Operations We can simplify the determinant by performing column operations. We will subtract the first column from the second and third columns: \[ f(x) = \begin{vmatrix} x + c_1 & (x + b) - (x + c_1) & (x + b) - (x + c_1) \\ x + c_2 & (x + a) - (x + c_2) & (x + b) - (x + c_2) \\ x + c_3 & (x + a) - (x + c_3) & (x + a) - (x + c_3) \end{vmatrix} \] This simplifies to: \[ f(x) = \begin{vmatrix} x + c_1 & b - c_1 & b - c_1 \\ x + c_2 & a - c_2 & b - c_2 \\ x + c_3 & a - c_3 & a - c_3 \end{vmatrix} \] ### Step 3: Factor Out Common Terms Now, we can factor out \( x \) from the first column: \[ f(x) = \begin{vmatrix} x & 1 & 1 \\ x & 1 & 1 \\ x & 1 & 1 \end{vmatrix} + \text{(terms without x)} \] The first column now has \( x \) factored out, and we can compute the determinant of the remaining matrix. ### Step 4: Calculate the Determinant The determinant will be: \[ f(x) = x \cdot \begin{vmatrix} 1 & b - c_1 & b - c_1 \\ 1 & a - c_2 & b - c_2 \\ 1 & a - c_3 & a - c_3 \end{vmatrix} \] Now, we can compute the determinant of the \( 2 \times 2 \) matrix. ### Step 5: Expand the Determinant The determinant simplifies to: \[ = (b - c_1)(a - c_3) - (b - c_1)(a - c_2) + \text{(other terms)} \] The coefficient of \( x \) will be the sum of the products of the constants from the determinant. ### Step 6: Identify the Coefficient of \( x \) The coefficient of \( x \) in \( f(x) \) will be the result of the determinant evaluated at \( x = 0 \). ### Final Answer The coefficient of \( x \) in \( f(x) \) is: \[ \text{Coefficient of } x = (b - c_1)(a - c_3) - (b - c_1)(a - c_2) \]

To find the coefficient of \( x \) in the determinant function \( f(x) \), we will follow these steps: ### Step 1: Write the Determinant The function \( f(x) \) is given as: \[ f(x) = \begin{vmatrix} x + c_1 & x + b & x + b \\ x + c_2 & x + a & x + b \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

f(x) = |{:(x+c_(1),,x+a,,x+a),(x+b,,x+c_(2),,x+a),(x+b,,x+b,,x+c_(3)):}| " and " g(x)= (C_(1) -x)(c_(3)-x) Which of the following is not true ?

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

If f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x+b, x+c, 0)| , then

If f(x)=|(x+c_1,x+a,x+a),(x+b,x+c_2,x+a),(x+b,x+b,x+c_3)| then show that f(x) is linear in x. Hence deduce f(0)= (bg(a)-ag(b))/((b-a)) where g(x)=(c_1-x)(c_2-x)(c_3-x)

If f(x)=A x^2+B x+C then find f '(x)

If f(x) = |(a_1+x, b_1+x, c_1+x), (a_2+x, b_2+x, c_2+x),(a_3+x, b_3+x, c_3+x)| , show that f''(x)=0 and that f(x)=f(0)+S ,where S denotes the sum of all the cofactors of all the element in f(0)dot

If a-2b+c=1 , then the value of |{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}| is

If f(x)=(x^(2)+3x+2)(x^(2)-7x+a) and g(x)=(x^(2)-x-12)(x^(2)+5x+b) , then the value of a and b , if (x+1)(x-4) is H.C.F. of f(x) and g(x) is (a) a=10 : b=6 (b) a=4 : b=12 (c) a=12 : b=4 (d) a=6 : b=10

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. f(x) = |{:(x+c(1),,x+a,,x+a),(x+b,,x+c(2),,x+a),(x+b,,x+b,,x+c(3)):}| ...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |