Home
Class 12
MATHS
Consider the system of equations x+y+...

Consider the system of equations
`x+y+z=6`
`x+2y+3z=10`
`x+2y+lambdaz =mu`
the system has unique solution if (a) `lambda ne 3` (b) `lambda =3, mu =10` (c) `lambda =3 , mu ne 10` (d) none of these

A

`lambda ne 3`

B

`lambda =3, mu =10`

C

`lambda =3 , mu ne 10`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given system of equations has a unique solution, we need to analyze the coefficient matrix of the system and ensure that its determinant is non-zero. ### Given System of Equations: 1. \( x + y + z = 6 \) 2. \( x + 2y + 3z = 10 \) 3. \( x + 2y + \lambda z = \mu \) ### Step 1: Form the Coefficient Matrix The coefficient matrix \( A \) for the system can be expressed as follows: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{bmatrix} \] ### Step 2: Calculate the Determinant of the Coefficient Matrix To find the determinant of matrix \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 1 \cdot (2 \cdot \lambda - 3 \cdot 2) - 1 \cdot (1 \cdot \lambda - 3 \cdot 1) + 1 \cdot (1 \cdot 2 - 2 \cdot 1) \] Calculating each term: 1. First term: \( 1 \cdot (2\lambda - 6) = 2\lambda - 6 \) 2. Second term: \( -1 \cdot (\lambda - 3) = -\lambda + 3 \) 3. Third term: \( 1 \cdot (2 - 2) = 0 \) Combining these results: \[ \text{det}(A) = (2\lambda - 6) - (\lambda - 3) + 0 \] Simplifying: \[ \text{det}(A) = 2\lambda - 6 - \lambda + 3 = \lambda - 3 - 3 = \lambda - 3 \] ### Step 3: Set the Determinant Not Equal to Zero For the system to have a unique solution, the determinant must be non-zero: \[ \lambda - 3 \neq 0 \] This implies: \[ \lambda \neq 3 \] ### Conclusion The system of equations has a unique solution if \( \lambda \neq 3 \). ### Answer The correct option is (a) \( \lambda \neq 3 \).

To determine the conditions under which the given system of equations has a unique solution, we need to analyze the coefficient matrix of the system and ensure that its determinant is non-zero. ### Given System of Equations: 1. \( x + y + z = 6 \) 2. \( x + 2y + 3z = 10 \) 3. \( x + 2y + \lambda z = \mu \) ### Step 1: Form the Coefficient Matrix ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu the system has infinite solutions if (a) lambda ne 3 (b) lambda =3,mu =10 (c) lambda =3,mu ne 10 (d) lambda =3,mu ne 10

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu The system has no solution if (a) lambda ne 3 (b) lambda =3, mu =10 (c) lambda =3, mu ne 10 (d) none of these

The system of equations: x+y+z=5 , x+2y+3z=9 and x+3y+lambdaz=mu has a unique solution, if (a) lambda=5,mu=13 (b) lambda!=5 (c) lambda=5,mu!=13 (d) mu!=13

If system of equation x + y + z = 6 x + 2y + 3z = 10 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda )

The system of linear equations x + y + z = 2 2x + y -z = 3 3x + 2y + kz = 4 has a unique solution, if

If system of equation x + y + z = 6 ,x + 2y + 3z = 10, 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda^2 )

The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a unique solution, if lambda=5,mu=13 (b) lambda!=5 lambda=5,mu!=13 (d) mu!=13

If the system of linear equation x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambdaz=mu(lambda,mu R) has a unique solution, then

If the system of linear equation x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambdaz=mu(lambda,mu R) has a unique solution, then lambda≠ 8 b. lambda=8,mu=36 c. lambda=8,mu!=36"" d. none of these

The system of equations x+y+z=6, x +2y + 3z = 10, x+2y + lambda z = k is inconsistent if lambda =.........,k!=.........

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambda...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |