Home
Class 12
MATHS
Consider the system of equations x+y+...

Consider the system of equations
`x+y+z=6`
`x+2y+3z=10`
`x+2y+lambdaz =mu`
The system has no solution if (a) `lambda ne 3` (b) `lambda =3, mu =10` (c) `lambda =3, mu ne 10` (d) none of these

A

`lambda ne 3`

B

`lambda =3, mu =10`

C

`lambda =3, mu ne 10`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given system of equations has no solution, we will analyze the equations step by step. ### Given System of Equations: 1. \( x + y + z = 6 \) (Equation 1) 2. \( x + 2y + 3z = 10 \) (Equation 2) 3. \( x + 2y + \lambda z = \mu \) (Equation 3) ### Step 1: Formulate the Coefficient Matrix The coefficient matrix \( A \) for the system can be represented as: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{bmatrix} \] ### Step 2: Calculate the Determinant of the Coefficient Matrix To find when the system has no solution, we need to set the determinant of the coefficient matrix to zero: \[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix} \] We can expand this determinant using the first row: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 2 & 3 \\ 2 & \lambda \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 3 \\ 1 & \lambda \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ 2 & \lambda \end{vmatrix} = 2\lambda - 6 \) 2. \( \begin{vmatrix} 1 & 3 \\ 1 & \lambda \end{vmatrix} = \lambda - 3 \) 3. \( \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0 \) Thus, we have: \[ \text{det}(A) = (2\lambda - 6) - (\lambda - 3) + 0 \] \[ = 2\lambda - 6 - \lambda + 3 \] \[ = \lambda - 3 \] ### Step 3: Set the Determinant to Zero For the system to have no solution, we set the determinant equal to zero: \[ \lambda - 3 = 0 \] \[ \lambda = 3 \] ### Step 4: Analyze the Condition for \( \mu \) Now we need to check the condition for \( \mu \). If \( \lambda = 3 \), the third equation becomes: \[ x + 2y + 3z = \mu \] Now, we compare this with Equation 2: \[ x + 2y + 3z = 10 \] For the system to have no solution, the lines represented by these equations must be parallel, which means the ratios of the coefficients must be the same, but the constants must differ: \[ \frac{10}{\mu} \neq 1 \quad \text{(since the coefficients are the same)} \] This implies: \[ 10 \neq \mu \] ### Conclusion The system of equations has no solution if: - \( \lambda = 3 \) - \( \mu \neq 10 \) Thus, the correct answer is: **(c) \( \lambda = 3, \mu \neq 10 \)**

To determine the conditions under which the given system of equations has no solution, we will analyze the equations step by step. ### Given System of Equations: 1. \( x + y + z = 6 \) (Equation 1) 2. \( x + 2y + 3z = 10 \) (Equation 2) 3. \( x + 2y + \lambda z = \mu \) (Equation 3) ### Step 1: Formulate the Coefficient Matrix ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu the system has unique solution if (a) lambda ne 3 (b) lambda =3, mu =10 (c) lambda =3 , mu ne 10 (d) none of these

Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambdaz =mu the system has infinite solutions if (a) lambda ne 3 (b) lambda =3,mu =10 (c) lambda =3,mu ne 10 (d) lambda =3,mu ne 10

If system of equation x + y + z = 6 x + 2y + 3z = 10 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda )

If system of equation x + y + z = 6 ,x + 2y + 3z = 10, 3x + 2y + lambda z = mu has more than two solutions. Find (mu -lambda^2 )

The system of equations: x+y+z=5 , x+2y+3z=9 and x+3y+lambdaz=mu has a unique solution, if (a) lambda=5,mu=13 (b) lambda!=5 (c) lambda=5,mu!=13 (d) mu!=13

If the system of equations x+y+z=2 2x+4y-z=6 3x+2y+lambdaz=mu has infinitely many solutions, then :

The system of equations: x+y+z=5 x+2y+3z=9 x+3y+lambdaz=mu has a unique solution, if lambda=5,mu=13 (b) lambda!=5 lambda=5,mu!=13 (d) mu!=13

Consider the system of equations {:(2x+lambday+6z=8),(x+2y+muz=5),(x+y+3z=4):} The system of equations has : No solution if :

The system of equations x+y+z=6, x +2y + 3z = 10, x+2y + lambda z = k is inconsistent if lambda =.........,k!=.........

If the system of linear equation x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambdaz=mu(lambda,mu R) has a unique solution, then lambda≠ 8 b. lambda=8,mu=36 c. lambda=8,mu!=36"" d. none of these

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambda...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |