Home
Class 12
MATHS
Let D1=|a b a+b c d c+d a b a-b|a n dD2=...

Let `D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c|` then the value of `|(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c ,` is _____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinants \( D_1 \) and \( D_2 \) and then find the value of \( \left| \frac{D_1}{D_2} \right| \). ### Step 1: Define the determinants We have: \[ D_1 = \begin{vmatrix} a & b & a+b \\ c & d & c+d \\ a & b & a-b \end{vmatrix} \] and \[ D_2 = \begin{vmatrix} a & c & a+c \\ b & d & b+d \\ a & c & a+b+c \end{vmatrix} \] ### Step 2: Simplify \( D_1 \) We will apply a column operation on \( D_1 \). Specifically, we will replace the third column with the result of the operation \( C_3 - C_1 + C_2 \): \[ C_3 \rightarrow C_3 - C_1 + C_2 \] This gives us: \[ D_1 = \begin{vmatrix} a & b & 0 \\ c & d & 0 \\ a & b & -2b \end{vmatrix} \] ### Step 3: Expand \( D_1 \) Now, we can expand \( D_1 \) along the third column: \[ D_1 = -2b \begin{vmatrix} a & b \\ c & d \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \] Thus, we have: \[ D_1 = -2b(ad - bc) \] ### Step 4: Simplify \( D_2 \) Next, we will apply the same column operation on \( D_2 \): \[ C_3 \rightarrow C_3 - C_1 + C_2 \] This gives us: \[ D_2 = \begin{vmatrix} a & c & 0 \\ b & d & 0 \\ a & c & b \end{vmatrix} \] ### Step 5: Expand \( D_2 \) Now, we can expand \( D_2 \) along the third column: \[ D_2 = b \begin{vmatrix} a & c \\ b & d \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc \] Thus, we have: \[ D_2 = b(ad - bc) \] ### Step 6: Calculate \( \left| \frac{D_1}{D_2} \right| \) Now, we can find \( \left| \frac{D_1}{D_2} \right| \): \[ \frac{D_1}{D_2} = \frac{-2b(ad - bc)}{b(ad - bc)} = -2 \] Taking the modulus: \[ \left| \frac{D_1}{D_2} \right| = |-2| = 2 \] ### Final Answer Thus, the value of \( \left| \frac{D_1}{D_2} \right| \) is \( \boxed{2} \).

To solve the given problem, we need to evaluate the determinants \( D_1 \) and \( D_2 \) and then find the value of \( \left| \frac{D_1}{D_2} \right| \). ### Step 1: Define the determinants We have: \[ D_1 = \begin{vmatrix} a & b & a+b \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.

If a+b+c+d = 24,a+b=c+d,a+c = 2(b+d) and a = b , what is the value of C?

If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d) , prove that: a : b = c : d .

If a ,\ b ,\ c ,\ d are in proportion, then (a) a b=c d (b) a c=b d (c) a d=b c (d) None of these

a ,b ,c x in R^+ such that a ,b ,a n dc are in A.P. and b ,ca n dd are in H.P., then a b=c d b. a c=b d c. b c=a d d. none of these

Let A={a , b , c , d}a n df: AvecA be given by f={(a , b),(b , d),(c , a),(d , c)}, write f^(-1)dot

Let A={a , b , c , d},\ B={a , b , c}a n d\ C={b , d} . Find all sets X such that: XsubB\ a n d\ XsubCdot

In Figure, B D=D C\ a n d\ /_D B C=25^0 find the measure of /_B A C

a,b,c,in N and d = |{:(a,b,c),(c,a,b),(b,c,a):}| , then the least positive value of d is

If a ,b ,c ,d in R^+ and a ,b ,c,d are in H.P., then (a) a+d > b+c (b) a+b > c+d (c) a+c > b+d (d)none of these

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Let D1=|a b a+b c d c+d a b a-b|a n dD2=|a c a+c b d b+d a c a+b+c| th...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |