Home
Class 12
MATHS
if a(1),a(2),a(3)……,a(12) are in A.P and...

if `a_(1),a_(2),a_(3)……,a_(12)` are in A.P and
`Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}|`
then `Delta_(1):Delta_(2)= "_____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the determinants \( \Delta_1 \) and \( \Delta_2 \) given that \( a_1, a_2, a_3, \ldots, a_{12} \) are in Arithmetic Progression (A.P.). ### Step 1: Express the terms in A.P. Since the terms \( a_1, a_2, a_3, \ldots, a_{12} \) are in A.P., we can express them as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - \( a_4 = a + 3d \) - \( a_5 = a + 4d \) - \( a_6 = a + 5d \) - \( a_7 = a + 6d \) - \( a_8 = a + 7d \) - \( a_9 = a + 8d \) - \( a_{10} = a + 9d \) - \( a_{11} = a + 10d \) - \( a_{12} = a + 11d \) ### Step 2: Calculate \( \Delta_1 \) The determinant \( \Delta_1 \) is given by: \[ \Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 & a_2 & a_3 \\ a_3 a_7 & a_3 & a_4 \end{vmatrix} \] Substituting the values: \[ \Delta_1 = \begin{vmatrix} a(a + 4d) & a & a + d \\ (a + d)(a + 5d) & a + d & a + 2d \\ (a + 2d)(a + 6d) & a + 2d & a + 3d \end{vmatrix} \] ### Step 3: Simplify \( \Delta_1 \) Calculating the first column: - \( a(a + 4d) = a^2 + 4ad \) - \( (a + d)(a + 5d) = a^2 + 6ad + d^2 \) - \( (a + 2d)(a + 6d) = a^2 + 8ad + 2d^2 \) Thus, we have: \[ \Delta_1 = \begin{vmatrix} a^2 + 4ad & a & a + d \\ a^2 + 6ad + d^2 & a + d & a + 2d \\ a^2 + 8ad + 2d^2 & a + 2d & a + 3d \end{vmatrix} \] ### Step 4: Calculate \( \Delta_2 \) The determinant \( \Delta_2 \) is given by: \[ \Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} & a_3 & a_4 \\ a_4 a_{12} & a_4 & a_5 \end{vmatrix} \] Substituting the values: \[ \Delta_2 = \begin{vmatrix} (a + d)(a + 9d) & a + d & a + 2d \\ (a + 2d)(a + 10d) & a + 2d & a + 3d \\ (a + 3d)(a + 11d) & a + 3d & a + 4d \end{vmatrix} \] ### Step 5: Simplify \( \Delta_2 \) Calculating the first column: - \( (a + d)(a + 9d) = a^2 + 10ad + 9d^2 \) - \( (a + 2d)(a + 10d) = a^2 + 12ad + 20d^2 \) - \( (a + 3d)(a + 11d) = a^2 + 14ad + 33d^2 \) Thus, we have: \[ \Delta_2 = \begin{vmatrix} a^2 + 10ad + 9d^2 & a + d & a + 2d \\ a^2 + 12ad + 20d^2 & a + 2d & a + 3d \\ a^2 + 14ad + 33d^2 & a + 3d & a + 4d \end{vmatrix} \] ### Step 6: Find the ratio \( \Delta_1 : \Delta_2 \) After simplifying both determinants, we find that: \[ \Delta_1 = -2d^4 \quad \text{and} \quad \Delta_2 = -2d^4 \] Thus, the ratio is: \[ \frac{\Delta_1}{\Delta_2} = \frac{-2d^4}{-2d^4} = 1 \] ### Final Answer \[ \Delta_1 : \Delta_2 = 1 : 1 \]

To solve the problem, we need to find the ratio of the determinants \( \Delta_1 \) and \( \Delta_2 \) given that \( a_1, a_2, a_3, \ldots, a_{12} \) are in Arithmetic Progression (A.P.). ### Step 1: Express the terms in A.P. Since the terms \( a_1, a_2, a_3, \ldots, a_{12} \) are in A.P., we can express them as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - \( a_4 = a + 3d \) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| then cofactor of a_23 represented as

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

if a_(r) = (cos 2r pi + I sin 2 r pi)^(1//9) then prove that |{:(a_(1),,a_(2),,a_(3)),a_(4) ,,a_(5),,a_(6)),( a_(7),, a_(8),,a_(9)):}|=0

Let numbers a_(1),a_(2)…a_(16) are in AP and a_(1)+a_(4)+a_(7)+a_(10)+a_(13)+a_(16)=114 then a_(1)+a_(5)+a_(12)+a_(16) is equal to

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if a(1),a(2),a(3)……,a(12) are in A.P and Delta(1)= |{:(a(1)a(5),,a(1...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |