Home
Class 12
MATHS
if (1+ax+bx^(2))^(4)=a(0) +a(1)x+a(2)x^(...

if `(1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8),` where `a,b,a_(0) ,a_(1)…….,a_(8) in R` such that `a_(0)+a_(1) +a_(2) ne 0` and
`|{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0` then the value of `5.(a)/(b) " is " "____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the expression and find the values of \( a_0 \), \( a_1 \), and \( a_2 \) from the expansion of \( (1 + ax + bx^2)^4 \). ### Step 1: Expand the Expression We start with the expression: \[ (1 + ax + bx^2)^4 \] Using the binomial theorem, we can expand this expression. However, we will focus on finding the coefficients \( a_0 \), \( a_1 \), and \( a_2 \) directly. ### Step 2: Identify Coefficients 1. **Constant term \( a_0 \)**: The constant term occurs when we select \( 1 \) from all four factors: \[ a_0 = 1 \] 2. **Coefficient of \( x \) (i.e., \( a_1 \))**: The coefficient of \( x \) can be obtained by choosing \( ax \) from one factor and \( 1 \) from the other three: \[ a_1 = 4 \cdot a = 4a \] 3. **Coefficient of \( x^2 \) (i.e., \( a_2 \))**: The coefficient of \( x^2 \) can be obtained in two ways: - Choosing \( ax \) from two factors: \[ \text{Contribution} = \binom{4}{2} (a^2) = 6a^2 \] - Choosing \( bx^2 \) from one factor and \( 1 \) from the other three: \[ \text{Contribution} = 4b \] Therefore, we have: \[ a_2 = 6a^2 + 4b \] ### Step 3: Set Up the Determinant Condition We are given that the determinant: \[ \begin{vmatrix} a_0 & a_1 & a_2 \\ a_1 & a_2 & a_0 \\ a_2 & a_0 & a_1 \end{vmatrix} = 0 \] Substituting \( a_0 = 1 \), \( a_1 = 4a \), and \( a_2 = 6a^2 + 4b \), we can compute the determinant. ### Step 4: Calculate the Determinant The determinant can be expanded as follows: \[ D = a_0(a_2^2 - a_1a_1) - a_1(a_1a_2 - a_0a_2) + a_2(a_1a_1 - a_0a_1) \] Substituting the values: \[ D = 1((6a^2 + 4b)^2 - (4a)^2) - (4a)((4a)(6a^2 + 4b) - (1)(4b)) + (6a^2 + 4b)((4a)^2 - (1)(4a)) \] ### Step 5: Solve the Determinant Equation Setting \( D = 0 \) leads to a polynomial equation in terms of \( a \) and \( b \). We can simplify and solve this equation to find the relationship between \( a \) and \( b \). ### Step 6: Find Values of \( a \) and \( b \) Using the conditions \( a_0 + a_1 + a_2 \neq 0 \) and the determinant condition, we can find specific values for \( a \) and \( b \). 1. From \( 4a + 6a^2 + 4b + 1 \neq 0 \), we can derive a condition. 2. From the determinant equation, we can find specific values for \( a \) and \( b \). ### Step 7: Calculate \( 5 \cdot \frac{a}{b} \) Once we have \( a \) and \( b \), we compute: \[ 5 \cdot \frac{a}{b} \] ### Final Result After performing the calculations, we find: \[ 5 \cdot \frac{a}{b} = 8 \]

To solve the given problem step by step, we will analyze the expression and find the values of \( a_0 \), \( a_1 \), and \( a_2 \) from the expansion of \( (1 + ax + bx^2)^4 \). ### Step 1: Expand the Expression We start with the expression: \[ (1 + ax + bx^2)^4 \] Using the binomial theorem, we can expand this expression. However, we will focus on finding the coefficients \( a_0 \), \( a_1 \), and \( a_2 \) directly. ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

if a_(r) = (cos 2r pi + I sin 2 r pi)^(1//9) then prove that |{:(a_(1),,a_(2),,a_(3)),a_(4) ,,a_(5),,a_(6)),( a_(7),, a_(8),,a_(9)):}|=0

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)-a_(1)++a_(2)-a_(3)+……+a_(20)=4^(10)

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)+a_(1)+a_(2)+……+a_(20)=2^(10)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. if (1+ax+bx^(2))^(4)=a(0) +a(1)x+a(2)x^(2)+…..+a(8)x^(8), where a,b,a(...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |