Home
Class 12
MATHS
|{:(5sqrt(log(5)3),,5sqrt(log(5)3),,5sqr...

`|{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,5sqrt(log_(5)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} \\ 3^{-\log_{1/3}4} & (0.1)^{\log_{0.01}4} & 7^{\log_{7}3} \\ 7 & 3 & 5 \end{vmatrix} \] we will simplify the expressions in the determinant and then calculate its value. ### Step 1: Simplify the elements of the determinant 1. **First Row Elements**: - The first row consists of the same element \(5\sqrt{\log_{5}3}\). 2. **Second Row Elements**: - For \(3^{-\log_{1/3}4}\): \[ 3^{-\log_{1/3}4} = 3^{\log_{3}4} = 4 \] - For \((0.1)^{\log_{0.01}4}\): \[ 0.1 = 10^{-1} \quad \text{and} \quad 0.01 = 10^{-2} \implies \log_{0.01}4 = \frac{\log_{10}4}{\log_{10}0.01} = \frac{\log_{10}4}{-2} = -\frac{1}{2}\log_{10}4 \] \[ (0.1)^{\log_{0.01}4} = (10^{-1})^{-\frac{1}{2}\log_{10}4} = 10^{\frac{1}{2}\log_{10}4} = 4^{1/2} = 2 \] - For \(7^{\log_{7}3}\): \[ 7^{\log_{7}3} = 3 \] 3. **Second Row After Simplification**: - The second row becomes \([4, 2, 3]\). ### Step 2: Rewrite the determinant Now, the determinant can be rewritten as: \[ D = \begin{vmatrix} 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} \\ 4 & 2 & 3 \\ 7 & 3 & 5 \end{vmatrix} \] ### Step 3: Apply column operations We can simplify the determinant by performing column operations: - Let \(C_2 \to C_2 - C_1\) - Let \(C_3 \to C_3 - C_1\) This gives us: \[ D = \begin{vmatrix} 5\sqrt{\log_{5}3} & 0 & 0 \\ 4 & -2 & -1 \\ 7 & -4 & -2 \end{vmatrix} \] ### Step 4: Calculate the determinant Now we can calculate the determinant using the first column: \[ D = 5\sqrt{\log_{5}3} \cdot \begin{vmatrix} -2 & -1 \\ -4 & -2 \end{vmatrix} \] Calculating the \(2 \times 2\) determinant: \[ \begin{vmatrix} -2 & -1 \\ -4 & -2 \end{vmatrix} = (-2)(-2) - (-1)(-4) = 4 - 4 = 0 \] ### Step 5: Conclusion Thus, the value of the determinant \(D\) is: \[ D = 5\sqrt{\log_{5}3} \cdot 0 = 0 \] ### Final Answer The value of the determinant is \(0\). ---

To solve the determinant \[ D = \begin{vmatrix} 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} & 5\sqrt{\log_{5}3} \\ 3^{-\log_{1/3}4} & (0.1)^{\log_{0.01}4} & 7^{\log_{7}3} \\ 7 & 3 & 5 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

If (log_(3)x)(log_(5)3)=3 , find x.

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Simplify :""^(3)sqrt(5^((1)/(log_(7)5))+(1)/(sqrt(-log_(10)(0.1))))

Show that log_(3) 9+ log_(3) 3= log_(5) 125

The value of 5^(sqrtlog_5 7)-7^sqrt(log_7 5) is

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve (0.5)^(log_(3)log_((1//5)))(x^(2)-4/5)gt 1 .

let N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3) , then N equals

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. |{:(5sqrt(log(5)3),,5sqrt(log(5)3),,5sqrt(log(5)3)),(3^(-log(1//3)4),,...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |