Home
Class 12
MATHS
Let a+b+c =s and |{:(s+c,,a,,b),(c,,s+a,...

Let a+b+c =s and `|{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=432` then the value of s is `"____"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given determinant and the relationship \( a + b + c = s \). ### Step 1: Write the determinant We have the determinant: \[ D = \begin{vmatrix} s+c & a & b \\ c & s+a & b \\ c & a & s+b \end{vmatrix} \] and we know that \( D = 432 \). ### Step 2: Simplify the determinant We can apply the column operation \( C_1 \to C_1 + C_2 + C_3 \): \[ D = \begin{vmatrix} (s+c) + a + b & a & b \\ c + (s+a) + b & s+a & b \\ c + a + (s+b) & a & s+b \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} s + (a+b+c) & a & b \\ s + (a+b+c) & s+a & b \\ s + (a+b+c) & a & s+b \end{vmatrix} \] Since \( a + b + c = s \), we can replace \( a + b + c \) with \( s \): \[ D = \begin{vmatrix} 2s & a & b \\ 2s & s+a & b \\ 2s & a & s+b \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out \( 2s \) from the first column: \[ D = 2s \begin{vmatrix} 1 & a & b \\ 1 & s+a & b \\ 1 & a & s+b \end{vmatrix} \] ### Step 4: Perform row operations Next, we can perform row operations to simplify the determinant: - \( R_2 \to R_2 - R_1 \) - \( R_3 \to R_3 - R_1 \) This gives us: \[ D = 2s \begin{vmatrix} 1 & a & b \\ 0 & (s+a - a) & (b - b) \\ 0 & (a - a) & (s+b - b) \end{vmatrix} \] Which simplifies to: \[ D = 2s \begin{vmatrix} 1 & a & b \\ 0 & s & 0 \\ 0 & 0 & s \end{vmatrix} \] ### Step 5: Calculate the determinant The determinant of the above matrix is: \[ D = 2s \cdot s \cdot s = 2s^3 \] ### Step 6: Set the determinant equal to 432 Now, we set the expression equal to 432: \[ 2s^3 = 432 \] ### Step 7: Solve for \( s \) Dividing both sides by 2: \[ s^3 = 216 \] Taking the cube root: \[ s = \sqrt[3]{216} = 6 \] ### Final Answer Thus, the value of \( s \) is: \[ \boxed{6} \]

To solve the problem step by step, we start with the given determinant and the relationship \( a + b + c = s \). ### Step 1: Write the determinant We have the determinant: \[ D = \begin{vmatrix} s+c & a & b \\ c & s+a & b \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}| is

If {:S=[(a,b),(c,d)]:} , then adj S is equal to

Without expanding show that, if s= a +b +c, then 2s is a factor of |{:( s+c, a,b),(c, s+a, b),(c,a,s+b):}|

If xy=a^2 and S = b^2x + c^2y where a, b and c are constants then the minimum value of S is

If the determinant |b-cc-a a-bb^(prime)-c ' c^(prime)-a ' a^(prime)-b ' b^-c ' ' c^-a ' ' a^-b ' '|=m|a b c a ' b ' c ' a ' ' b ' ' c ' '| , then the value of m s 0 b. 2 c. 1 d. -1

In a cyclic quadrilateral ABCD, prove that tan ^(2)""(B)/(2)=((s-a)(s-b))/((s-c)(s-d)),a,b,c, and d being the lengths of sides ABC, CD and DA respectively and s is semi-perimeter of quadrilateral.

The point P(a,b), Q(c,d), R(a,d) and S(c,b) , where a,b,c ,d are distinct real numbers, are

Let A = {1, 2, 3}, B = {a, b, c}, C {a_(1), b_(1), c_(1), d_(1), e_(1)} and consider the following statements. S_(1) : The number of one-one functions from A to C is 60. S_(2) : The number of onto functions from C to A is 150 S_(3) : The number of onto functions from B to C is 0 S_(4) : The number of objective functions from A to B is 6 Which of the following combination is true ?

If the angles of ∆ABC are in ratio 1:1:2, respectively (the largest angle being angle C), then the value of s e c A c o s e c B secAcosecB - t a n A c o t B tanAcotB is (a) 0 (b) 1/2 (c) 1 (d) √3/2

If in a triangle ABC, right angled at B, s-a=3, s-c=2, then the values of a and c are respectively

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Let a+b+c =s and |{:(s+c,,a,,b),(c,,s+a,,b),(c,,a,,s+b):}|=432 then t...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |