Home
Class 12
MATHS
Let alpha,beta,gamma are the real roots ...

Let `alpha,beta,gamma` are the real roots of the equation `x^3+a x^2+b x+c=0(a ,b ,c in Ra n da!=0)dot` If the system of equations `(inu ,v ,a n d w)` given by `alphau+betav+gammaw=0` `betau+gammav+alphaw=0` `gammau+alphav+betaw=0` has non-trivial solutions then the value of `a^2//b` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given cubic equation and the system of equations. Let's break it down step by step. ### Step 1: Understand the cubic equation The cubic equation given is: \[ x^3 + ax^2 + bx + c = 0 \] where \( \alpha, \beta, \gamma \) are the roots of this equation. ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: 1. \( \alpha + \beta + \gamma = -a \) 2. \( \alpha\beta + \beta\gamma + \gamma\alpha = b \) 3. \( \alpha\beta\gamma = -c \) ### Step 3: Write down the system of equations The system of equations is: 1. \( \alpha u + \beta v + \gamma w = 0 \) 2. \( \beta u + \gamma v + \alpha w = 0 \) 3. \( \gamma u + \alpha v + \beta w = 0 \) ### Step 4: Set up the determinant For the system to have non-trivial solutions, the determinant of the coefficients must be zero. We can write the determinant as: \[ \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} = 0 \] ### Step 5: Expand the determinant We can expand this determinant along the first row: \[ D = \alpha \begin{vmatrix} \gamma & \alpha \\ \alpha & \beta \end{vmatrix} - \beta \begin{vmatrix} \beta & \alpha \\ \gamma & \beta \end{vmatrix} + \gamma \begin{vmatrix} \beta & \gamma \\ \gamma & \alpha \end{vmatrix} \] Calculating the 2x2 determinants, we have: 1. \( \begin{vmatrix} \gamma & \alpha \\ \alpha & \beta \end{vmatrix} = \gamma \beta - \alpha^2 \) 2. \( \begin{vmatrix} \beta & \alpha \\ \gamma & \beta \end{vmatrix} = \beta^2 - \alpha\gamma \) 3. \( \begin{vmatrix} \beta & \gamma \\ \gamma & \alpha \end{vmatrix} = \beta \alpha - \gamma^2 \) Substituting these back into the determinant: \[ D = \alpha(\gamma \beta - \alpha^2) - \beta(\beta^2 - \alpha\gamma) + \gamma(\beta \alpha - \gamma^2) \] ### Step 6: Simplify the determinant After simplifying, we arrive at: \[ D = \alpha \gamma \beta - \alpha^3 - \beta^3 + \alpha \beta \gamma - \gamma^3 = 0 \] This can be rearranged to: \[ \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = 0 \] ### Step 7: Use the identity for cubes Using the identity for the sum of cubes: \[ \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) \] Substituting \( \alpha + \beta + \gamma = -a \) and \( \alpha\beta + \beta\gamma + \gamma\alpha = b \): \[ \alpha^3 + \beta^3 + \gamma^3 = -a \left( \frac{a^2}{3} - b \right) \] ### Step 8: Set the equation to zero Setting the equation to zero gives us: \[ -a \left( \frac{a^2}{3} - b \right) = 3\alpha\beta\gamma \] Substituting \( \alpha\beta\gamma = -c \) leads to: \[ -a \left( \frac{a^2}{3} - b \right) = -3c \] ### Step 9: Solve for \( \frac{a^2}{b} \) From the equation \( a^2 = 3b \), we can write: \[ \frac{a^2}{b} = 3 \] ### Final Answer Thus, the value of \( \frac{a^2}{b} \) is: \[ \boxed{3} \]

To solve the problem, we need to analyze the given cubic equation and the system of equations. Let's break it down step by step. ### Step 1: Understand the cubic equation The cubic equation given is: \[ x^3 + ax^2 + bx + c = 0 \] where \( \alpha, \beta, \gamma \) are the roots of this equation. ### Step 2: Use Vieta's formulas ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+c=0(a ,b ,c in R and a!=0) dot If the system of equations in ( u ,v ,and w) given by alphau+betav+gammaw=0 , betau+gammav+alphaw=0 , gammau+alphav+betaw=0 has non-trivial solutions then the value of a^2//b is ________.

Let alpha ,beta and gamma be the roots of the equations x^(3) +ax^(2)+bx+ c=0,(a ne 0) . If the system of equations alphax + betay+gammaz=0 beta x +gamma y+ alphaz =0 and gamma x =alpha y + betaz =0 has non-trivial solution then

If alpha and beta (alpha lt beta) are the roots of the equation x^(2) + bx + c = 0 , where c lt 0 lt b , then

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alphaa n dbetadot

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alpha and betadot

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c0|=0,a!=b!=ca n db(a+c)> a c

If alpha,beta are the roots of the equation ax^2 + bx+c=0 then the roots of the equation (a + b + c)x^2-(b + 2c)x+c=0 are (a) c (b) d-c (c) 2c (d) 0

If alpha, beta are roots of the equation 2x^2 + 6x + b = 0 (b < 0), then alpha/beta+beta/alpha is less than

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Let alpha,beta,gamma are the real roots of the equation x^3+a x^2+b x+...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |