Home
Class 12
MATHS
The value of |alpha| for which the sy...

The value of `|alpha|` for which the system of equation
`alphax+y+z=alpha-1`
`x+alphay+z=alpha-1`
`x+y+alphaz=alpha-1`
has no solution , is `"____"`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( |\alpha| \) for which the system of equations has no solution, we need to analyze the given equations: 1. \( \alpha x + y + z = \alpha - 1 \) 2. \( x + \alpha y + z = \alpha - 1 \) 3. \( x + y + \alpha z = \alpha - 1 \) ### Step 1: Write the system in matrix form The system can be represented in matrix form as: \[ \begin{bmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \alpha - 1 \\ \alpha - 1 \\ \alpha - 1 \end{bmatrix} \] ### Step 2: Determine the determinant of the coefficient matrix Let \( D \) be the determinant of the coefficient matrix: \[ D = \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula for a 3x3 matrix, we have: \[ D = \alpha \begin{vmatrix} \alpha & 1 \\ 1 & \alpha \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \alpha \end{vmatrix} + 1 \begin{vmatrix} 1 & \alpha \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \alpha & 1 \\ 1 & \alpha \end{vmatrix} = \alpha^2 - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & \alpha \end{vmatrix} = \alpha - 1 \) 3. \( \begin{vmatrix} 1 & \alpha \\ 1 & 1 \end{vmatrix} = 1 - \alpha \) Substituting these back into the determinant: \[ D = \alpha(\alpha^2 - 1) - (\alpha - 1) + (1 - \alpha) \] Simplifying: \[ D = \alpha^3 - \alpha - \alpha + 1 + 1 - \alpha \] \[ D = \alpha^3 - 3\alpha + 2 \] ### Step 4: Set the determinant equal to zero For the system to have no solution, we set \( D = 0 \): \[ \alpha^3 - 3\alpha + 2 = 0 \] ### Step 5: Factor the polynomial To find the roots, we can try possible rational roots. Testing \( \alpha = 1 \): \[ 1^3 - 3(1) + 2 = 0 \] Thus, \( \alpha = 1 \) is a root. We can factor the polynomial as: \[ (\alpha - 1)(\alpha^2 + \alpha - 2) = 0 \] Next, we factor \( \alpha^2 + \alpha - 2 \): \[ \alpha^2 + \alpha - 2 = (\alpha - 1)(\alpha + 2) \] Thus, the complete factorization is: \[ (\alpha - 1)^2(\alpha + 2) = 0 \] ### Step 6: Find the roots Setting each factor to zero gives: 1. \( \alpha - 1 = 0 \) → \( \alpha = 1 \) 2. \( \alpha + 2 = 0 \) → \( \alpha = -2 \) ### Step 7: Determine valid solutions Since the system has no solution when \( \alpha = 1 \), we discard this value as it is not valid. Thus, the only value of \( \alpha \) for which the system has no solution is: \[ \alpha = -2 \] ### Final Answer The value of \( |\alpha| \) is: \[ |\alpha| = 2 \]

To find the value of \( |\alpha| \) for which the system of equations has no solution, we need to analyze the given equations: 1. \( \alpha x + y + z = \alpha - 1 \) 2. \( x + \alpha y + z = \alpha - 1 \) 3. \( x + y + \alpha z = \alpha - 1 \) ### Step 1: Write the system in matrix form The system can be represented in matrix form as: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The value of |alpha| for which the system of equation alphax+y+z=alpha-1 x+alphay+z=alpha-1 x+y+alphaz=alpha-1 has no solutions, is ________.

The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 x+y+alphaz=alpha-1 and has no solution if alpha is

The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1, x+y+alphaz=alpha-1 has no solution if alpha is (A) 1 (B) not -2 (C) either -2 or 1 (D) -2

For what value of alpha, the system of equations alphax+3y=alpha-3 12 x+alphay=alpha will have no solution?

For what value(s) of alpha will the system of linear equations alphax + 3y = alpha - 3 and 12x + alpha y = alpha has a unique solution?

The system of equations alpha(x-1)+y+z=-1, x+alpha(y-1)+z=-1 and x+y+alpha(z-1)=-1 has no solution, if alpha is equal to

Value of 'alpha' for which system of equations x+y+z=1,x+2y+4z=alpha and x+4y+10 z=alpha^2 is consistent, are

If a , b , c are non-zero, then the system of equations (alpha+a)x+alphay+alphaz=0, alphax+(alpha+b)y+alphaz=0, alphax+alphay+(alpha+c)z=0 has a non-trivial solution if

If a , b , c are non-zero, then the system of equations (alpha+a)x+alphay+alphaz=0,alphax+(alpha+b)y+alphaz=0,alphax+alphay+(alpha+c)z=0' has a non-trivial solution if alpha^(-1)= (A) -(a^(-1)+b^(-1)+c^(-1)) (B) a+b+c (C) alpha+a+b+c=1 (D) none of these

An ordered pair (alpha, beta) for which the system of linear equations (1+alpha)x+betay+z=2 , alphax+(1+beta)y+z=3 and alphax+betay+2z=2 has unique solution is: (a) (2,4) (b) (-3,1) (c) (-4,2) (d) (1,-3)

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The value of |alpha| for which the system of equation alphax+y+z=...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |