Home
Class 12
MATHS
Number of values of theta lying I [0,...

Number of values of `theta` lying I [0,100`pi`] for which the system of equations (sin 3`theta`) x-y+z=0, (cos 2`theta`) x+4y +3z=0, 2x+ 7y+7z =0 has non-trivial solution is `"____"`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of values of \( \theta \) in the interval \([0, 100\pi]\) for which the system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix of the system. The system of equations is given as: 1. \( \sin(3\theta) x - y + z = 0 \) 2. \( \cos(2\theta) x + 4y + 3z = 0 \) 3. \( 2x + 7y + 7z = 0 \) ### Step 1: Form the Coefficient Matrix and Set Up the Determinant The coefficient matrix of the system can be written as: \[ \begin{bmatrix} \sin(3\theta) & -1 & 1 \\ \cos(2\theta) & 4 & 3 \\ 2 & 7 & 7 \end{bmatrix} \] For the system to have a non-trivial solution, the determinant of this matrix must be zero: \[ \Delta = \begin{vmatrix} \sin(3\theta) & -1 & 1 \\ \cos(2\theta) & 4 & 3 \\ 2 & 7 & 7 \end{vmatrix} = 0 \] ### Step 2: Calculate the Determinant Calculating the determinant using the formula for a \(3 \times 3\) matrix: \[ \Delta = \sin(3\theta) \begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} - (-1) \begin{vmatrix} \cos(2\theta) & 3 \\ 2 & 7 \end{vmatrix} + 1 \begin{vmatrix} \cos(2\theta) & 4 \\ 2 & 7 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} = 4 \cdot 7 - 3 \cdot 7 = 28 - 21 = 7 \) 2. \( \begin{vmatrix} \cos(2\theta) & 3 \\ 2 & 7 \end{vmatrix} = \cos(2\theta) \cdot 7 - 3 \cdot 2 = 7\cos(2\theta) - 6 \) 3. \( \begin{vmatrix} \cos(2\theta) & 4 \\ 2 & 7 \end{vmatrix} = \cos(2\theta) \cdot 7 - 4 \cdot 2 = 7\cos(2\theta) - 8 \) Substituting back into the determinant: \[ \Delta = \sin(3\theta) \cdot 7 + (7\cos(2\theta) - 6) + (7\cos(2\theta) - 8) \] Combining terms: \[ \Delta = 7\sin(3\theta) + 14\cos(2\theta) - 14 = 0 \] ### Step 3: Simplify the Equation Dividing the entire equation by 7 gives: \[ \sin(3\theta) + 2\cos(2\theta) - 2 = 0 \] ### Step 4: Use Trigonometric Identities Using the identities: - \( \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) \) - \( \cos(2\theta) = 1 - 2\cos^2(\theta) \) Substituting these into the equation: \[ 3\sin(\theta) - 4\sin^3(\theta) + 2(1 - 2\cos^2(\theta)) - 2 = 0 \] This simplifies to: \[ -4\sin^3(\theta) + 3\sin(\theta) + 2 - 4\cos^2(\theta) - 2 = 0 \] ### Step 5: Factor the Equation Rearranging gives: \[ 4\sin^3(\theta) + 4\sin^2(\theta) - 3\sin(\theta) = 0 \] Factoring out \( \sin(\theta) \): \[ \sin(\theta)(4\sin^2(\theta) + 4\sin(\theta) - 3) = 0 \] ### Step 6: Solve for \( \theta \) 1. **First Factor**: \( \sin(\theta) = 0 \) - Solutions in \([0, 100\pi]\): \( \theta = n\pi \) where \( n = 0, 1, 2, \ldots, 100 \) (Total: 101 solutions). 2. **Second Factor**: \( 4\sin^2(\theta) + 4\sin(\theta) - 3 = 0 \) - Using the quadratic formula: \[ \sin(\theta) = \frac{-4 \pm \sqrt{16 + 48}}{8} = \frac{-4 \pm 8}{8} \] - Solutions: \( \sin(\theta) = \frac{1}{2} \) (valid) and \( \sin(\theta) = -\frac{3}{2} \) (not valid). - For \( \sin(\theta) = \frac{1}{2} \): - Solutions in \([0, 100\pi]\): \( \theta = \frac{\pi}{6} + 2k\pi \) and \( \theta = \frac{5\pi}{6} + 2k\pi \) for \( k = 0, 1, 2, \ldots, 99 \) (Total: 100 solutions). ### Final Count of Solutions Adding the solutions from both factors gives: \[ 101 + 100 = 201 \] ### Answer The number of values of \( \theta \) lying in \([0, 100\pi]\) for which the system of equations has a non-trivial solution is **201**.

To find the number of values of \( \theta \) in the interval \([0, 100\pi]\) for which the system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix of the system. The system of equations is given as: 1. \( \sin(3\theta) x - y + z = 0 \) 2. \( \cos(2\theta) x + 4y + 3z = 0 \) 3. \( 2x + 7y + 7z = 0 \) ### Step 1: Form the Coefficient Matrix and Set Up the Determinant The coefficient matrix of the system can be written as: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

the value of theta for which the system of equations (sin 3theta)x-2y+3z=0, (cos 2theta)x+8y-7z=0 and 2x+14y-11z=0 has a non - trivial solution, is (here, n in Z )

the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 (cos theta) x+y+2z=0 , 0 le theta lt 2 pi has non-trivial solution (s)

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z = 0 has non-trivial solution if a, b, c are in

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

The number of integral values of a for which the system of linear equations x sin theta -2 y cos theta -az=0 , x+2y+z=0,-x+y+z=0 may have non-trivial solutions, then

Find a in R for which the system of equations 2ax-2y+3z=0 , x+ay + 2z=0 and 2x+az=0 also have a non-trivial solution.

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0

Show that the homogenous system of equations x - 2y + z = 0, x + y - z = 0, 3 x + 6y - 5z = 0 has a non-trivial solution. Also find the solution

Consider the system of equations : x sintheta-2ycostheta-az=0 , x+2y+z=0 , -x+y+z=0 , theta in R

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Number of values of theta lying I [0,100pi] for which the system ...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |