Home
Class 12
MATHS
Consider the system of linear equations:...

Consider the system of linear equations:
`x_(1) + 2x_(2) + x_(3) = 3`
`2x_(1) + 3x_(2) + x_(3) = 3`
`3x_(1) + 5x_(2) + 2x_(3) = 1`
The system has

A

no solution

B

infinite number of solutions

C

exactly three solutions.

D

a unique solution

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of solutions for the given system of linear equations, we will use the concept of determinants. The equations are: 1. \( x_1 + 2x_2 + x_3 = 3 \) 2. \( 2x_1 + 3x_2 + x_3 = 3 \) 3. \( 3x_1 + 5x_2 + 2x_3 = 1 \) ### Step 1: Write the Coefficient Matrix and the Constant Matrix We can represent the system of equations in matrix form as: \[ \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} \] ### Step 2: Calculate the Determinant \( D \) The determinant \( D \) of the coefficient matrix is calculated as follows: \[ D = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we have: \[ D = 1 \cdot (3 \cdot 2 - 1 \cdot 5) - 2 \cdot (2 \cdot 2 - 1 \cdot 3) + 1 \cdot (2 \cdot 5 - 3 \cdot 3) \] \[ = 1 \cdot (6 - 5) - 2 \cdot (4 - 3) + 1 \cdot (10 - 9) \] \[ = 1 \cdot 1 - 2 \cdot 1 + 1 \cdot 1 \] \[ = 1 - 2 + 1 = 0 \] ### Step 3: Calculate Determinants \( D_1, D_2, D_3 \) Next, we calculate \( D_1, D_2, D_3 \) by replacing the respective columns with the constant matrix. #### Determinant \( D_1 \) \[ D_1 = \begin{vmatrix} 3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 5 & 2 \end{vmatrix} \] Calculating \( D_1 \): \[ D_1 = 3 \cdot (3 \cdot 2 - 1 \cdot 5) - 2 \cdot (3 \cdot 2 - 1 \cdot 3) + 1 \cdot (3 \cdot 5 - 3 \cdot 1) \] \[ = 3 \cdot (6 - 5) - 2 \cdot (6 - 3) + 1 \cdot (15 - 3) \] \[ = 3 \cdot 1 - 2 \cdot 3 + 1 \cdot 12 \] \[ = 3 - 6 + 12 = 9 \] #### Determinant \( D_2 \) \[ D_2 = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{vmatrix} \] Calculating \( D_2 \): \[ D_2 = 1 \cdot (3 \cdot 2 - 1 \cdot 1) - 3 \cdot (2 \cdot 2 - 1 \cdot 3) + 1 \cdot (2 \cdot 1 - 3 \cdot 3) \] \[ = 1 \cdot (6 - 1) - 3 \cdot (4 - 3) + 1 \cdot (2 - 9) \] \[ = 1 \cdot 5 - 3 \cdot 1 + 1 \cdot (-7) \] \[ = 5 - 3 - 7 = -5 \] #### Determinant \( D_3 \) \[ D_3 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 5 & 1 \end{vmatrix} \] Calculating \( D_3 \): \[ D_3 = 1 \cdot (3 \cdot 1 - 3 \cdot 5) - 2 \cdot (2 \cdot 1 - 3 \cdot 3) + 3 \cdot (2 \cdot 5 - 3 \cdot 3) \] \[ = 1 \cdot (3 - 15) - 2 \cdot (2 - 9) + 3 \cdot (10 - 9) \] \[ = 1 \cdot (-12) - 2 \cdot (-7) + 3 \cdot 1 \] \[ = -12 + 14 + 3 = 5 \] ### Step 4: Analyze the Determinants Now we have: - \( D = 0 \) - \( D_1 = 9 \) - \( D_2 = -5 \) - \( D_3 = 5 \) Since \( D = 0 \) and \( D_1 \neq 0 \), \( D_2 \neq 0 \), and \( D_3 \neq 0 \), this indicates that the system of equations has **no solution**. ### Conclusion The system of linear equations has **no solution**.

To determine the number of solutions for the given system of linear equations, we will use the concept of determinants. The equations are: 1. \( x_1 + 2x_2 + x_3 = 3 \) 2. \( 2x_1 + 3x_2 + x_3 = 3 \) 3. \( 3x_1 + 5x_2 + 2x_3 = 1 \) ### Step 1: Write the Coefficient Matrix and the Constant Matrix ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The set of the all values of lamda for which the system of linear equations 2x_(1) - 2x_(2) + x_(3) = lamdax_(1) 2x_(1) - 3x_(2) + 2x_(3) = lamda x_(2) -x_(1) + 2x_(2) = lamda x_(3) has a non-trivial solution,

Using the matrix method, solve the following system of equations: x_(1)-2x_(2) + 3x_(3) =4, 2x_(1) + x_(2)-3x_(3) =5, -x_(1) + x_(2) + 2x_(3)=3

Consider the system of linear equations; x-1\ +2x_2+x_3=3, 2x_1+3x_2+_3=3, 3x_1+5x_2+2x_3=1 The system has Infinite number of solutions Exactly 3 solutions A unique solution No solution

The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2x + 3y + (a^(2) - 1)z = a + 1

Solve the system of equations 2x + 5y = 1 and 3x + 2y = 7

Solve system of linear equations, using matrix method, 2x - y = -2" " 3x + 4y = 3

Solve the following system of linear equations by matrix method: 3x-2y=7, 5x+3y=1

The solution set of system of linear inequalities 2(x+1) le x+5, 3(x+2), gt 2 - x , x in R is

Find the sum of the following algebraic expressions : 3x^(3) - 5x^(2) + 2x + 1 , 3x - 2x^(3) - x^(3) , 2x^(2) - 7x + 9

Examine the consistency of the system of equations 3x -y - 2z = 2" " 2y -z = 1" " 3x - 5y = 3

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |