Home
Class 12
MATHS
The number of values of k for which the ...

The number of values of k for which the linear equations `4x""+""k y""+""2z""=""0` `k x""+""4y""+""z""=""0` `2x""+""2y""+""z""=""0` posses a non-zero solution is : (1) 3 (2) 2 (3) 1 (4) zero

A

zero

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of values of \( k \) for which the given linear equations possess a non-zero solution, we will analyze the system of equations using determinants. The given equations are: 1. \( 4x + ky + 2z = 0 \) 2. \( kx + 4y + z = 0 \) 3. \( 2x + 2y + z = 0 \) We can express this system in matrix form as follows: \[ \begin{bmatrix} 4 & k & 2 \\ k & 4 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] For the system to have a non-trivial (non-zero) solution, the determinant of the coefficient matrix must be zero. Let's denote the matrix as \( A \): \[ A = \begin{bmatrix} 4 & k & 2 \\ k & 4 & 1 \\ 2 & 2 & 1 \end{bmatrix} \] Now, we will calculate the determinant \( |A| \): \[ |A| = \begin{vmatrix} 4 & k & 2 \\ k & 4 & 1 \\ 2 & 2 & 1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we have: \[ |A| = 4 \begin{vmatrix} 4 & 1 \\ 2 & 1 \end{vmatrix} - k \begin{vmatrix} k & 1 \\ 2 & 1 \end{vmatrix} + 2 \begin{vmatrix} k & 4 \\ 2 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 1 \\ 2 & 1 \end{vmatrix} = (4)(1) - (1)(2) = 4 - 2 = 2 \) 2. \( \begin{vmatrix} k & 1 \\ 2 & 1 \end{vmatrix} = (k)(1) - (1)(2) = k - 2 \) 3. \( \begin{vmatrix} k & 4 \\ 2 & 2 \end{vmatrix} = (k)(2) - (4)(2) = 2k - 8 \) Substituting these values back into the determinant expression: \[ |A| = 4(2) - k(k - 2) + 2(2k - 8) \] Simplifying this: \[ |A| = 8 - (k^2 - 2k) + (4k - 16) \] \[ = 8 - k^2 + 2k + 4k - 16 \] \[ = -k^2 + 6k - 8 \] Setting the determinant equal to zero for non-trivial solutions: \[ -k^2 + 6k - 8 = 0 \] Multiplying through by -1 gives: \[ k^2 - 6k + 8 = 0 \] Now, we can factor this quadratic equation: \[ k^2 - 4k - 2k + 8 = 0 \] \[ (k - 4)(k - 2) = 0 \] Thus, the solutions for \( k \) are: \[ k = 2 \quad \text{and} \quad k = 4 \] Therefore, there are **2 values** of \( k \) for which the system has a non-zero solution. **Final Answer:** The number of values of \( k \) is **2**. ---

To determine the number of values of \( k \) for which the given linear equations possess a non-zero solution, we will analyze the system of equations using determinants. The given equations are: 1. \( 4x + ky + 2z = 0 \) 2. \( kx + 4y + z = 0 \) 3. \( 2x + 2y + z = 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The number of value of k for which the linear equations 4x+k y+2z=0k x=4y+z=0 2x+2y+z=0 posses a non-zero solution is- a. 1 b. \ zero c. \ 3 d. 2

Write the value of k for which the system of equations x+y-4=0 and 2x+k y-3=0 has no solution

Number of values of k for which the lines k x+y+1=0 x+k y+2=0 x+y+k=0 are concurrent is 3 (2) 2 (3) 1 (4) 0

The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z = 0 and 2x+3y-4z=0 has non-trivial solution is (A) 15 (B) 16 (C) 31/2 (D) 33/2

The values of k in R for which the system of equations x+k y+3z=0,k x+2y+2z=0,2x+3y+4z=0 admits of nontrivial solution is a. 2 b. 5//2 c. 3 d. 5//4

The real value of k for which the system of equation 2k x-2y+3z=0, x+ky+2z=0, 2x+kz=0 has non-trivial solution is

The values of k in R for which the system of equations x+k y+3z=0,k x+2y+2z=0,2x+3y+4z=0 admits of nontrivial solution is 2 b. 5//2 c. 3 d. 5//4

Number of values of theta lying I [0,100 pi ] for which the system of equations (sin 3 theta ) x-y+z=0, (cos 2 theta ) x+4y +3z=0, 2x+ 7y+7z =0 has non-trivial solution is "____"

The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=0, ax+(a+1)y+(a+2)z=0, x + y + z = 0 , has a non-zero solution is:

If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 has a non-zero solution (x,y,z) then (xz)/(y^2) is equal to

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The number of values of k for which the linear equations 4x""+""k y""+...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |