Home
Class 12
MATHS
The set of the all values of lamda for w...

The set of the all values of `lamda` for which the system of linear equations
`2x_(1) - 2x_(2) + x_(3) = lamdax_(1)`
`2x_(1) - 3x_(2) + 2x_(3) = lamda x_(2)`
`-x_(1) + 2x_(2) = lamda x_(3)` has a non-trivial solution,

A

is an empty set

B

is a singleton set

C

contains two elements

D

contains more than two elements

Text Solution

AI Generated Solution

The correct Answer is:
To find the set of all values of \( \lambda \) for which the given system of linear equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix. The system of equations is: 1. \( 2x_1 - 2x_2 + x_3 = \lambda x_1 \) 2. \( 2x_1 - 3x_2 + 2x_3 = \lambda x_2 \) 3. \( -x_1 + 2x_2 = \lambda x_3 \) We can rewrite these equations in standard form: 1. \( (2 - \lambda)x_1 - 2x_2 + x_3 = 0 \) 2. \( 2x_1 + (-3 - \lambda)x_2 + 2x_3 = 0 \) 3. \( -x_1 + 2x_2 - \lambda x_3 = 0 \) Now, we can express the system in matrix form \( A \mathbf{x} = 0 \), where \( A \) is the coefficient matrix: \[ A = \begin{bmatrix} 2 - \lambda & -2 & 1 \\ 2 & -3 - \lambda & 2 \\ -1 & 2 & -\lambda \end{bmatrix} \] For the system to have a non-trivial solution, the determinant of the matrix \( A \) must be zero: \[ \text{det}(A) = 0 \] ### Step 1: Calculate the Determinant We will calculate the determinant of matrix \( A \): \[ \text{det}(A) = \begin{vmatrix} 2 - \lambda & -2 & 1 \\ 2 & -3 - \lambda & 2 \\ -1 & 2 & -\lambda \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. ### Step 2: Expand the Determinant Expanding the determinant: \[ = (2 - \lambda) \begin{vmatrix} -3 - \lambda & 2 \\ 2 & -\lambda \end{vmatrix} + 2 \begin{vmatrix} 2 & 2 \\ -1 & -\lambda \end{vmatrix} + 1 \begin{vmatrix} 2 & -3 - \lambda \\ -1 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -3 - \lambda & 2 \\ 2 & -\lambda \end{vmatrix} = (-3 - \lambda)(-\lambda) - (2)(2) = \lambda^2 + 3\lambda - 4 \) 2. \( \begin{vmatrix} 2 & 2 \\ -1 & -\lambda \end{vmatrix} = (2)(-\lambda) - (2)(-1) = -2\lambda + 2 \) 3. \( \begin{vmatrix} 2 & -3 - \lambda \\ -1 & 2 \end{vmatrix} = (2)(2) - (-1)(-3 - \lambda) = 4 - (3 + \lambda) = 1 - \lambda \) ### Step 3: Substitute Back Now substituting back into the determinant expression: \[ \text{det}(A) = (2 - \lambda)(\lambda^2 + 3\lambda - 4) + 2(-2\lambda + 2) + (1 - \lambda) \] ### Step 4: Set the Determinant to Zero Setting the determinant equal to zero: \[ (2 - \lambda)(\lambda^2 + 3\lambda - 4) - 4\lambda + 4 + 1 - \lambda = 0 \] ### Step 5: Solve the Polynomial This results in a polynomial equation in \( \lambda \). We can simplify and factor this polynomial to find the values of \( \lambda \). After simplification, we find: \[ (1 - \lambda)(\lambda - 2)(\lambda + 4) = 0 \] ### Step 6: Find the Values of \( \lambda \) Thus, the values of \( \lambda \) are: \[ \lambda = 1, \quad \lambda = 2, \quad \lambda = -4 \] ### Conclusion The set of all values of \( \lambda \) for which the system of linear equations has a non-trivial solution is: \[ \{ 1, 2, -4 \} \]

To find the set of all values of \( \lambda \) for which the given system of linear equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix. The system of equations is: 1. \( 2x_1 - 2x_2 + x_3 = \lambda x_1 \) 2. \( 2x_1 - 3x_2 + 2x_3 = \lambda x_2 \) 3. \( -x_1 + 2x_2 = \lambda x_3 \) We can rewrite these equations in standard form: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Consider the system of linear equations: x_(1) + 2x_(2) + x_(3) = 3 2x_(1) + 3x_(2) + x_(3) = 3 3x_(1) + 5x_(2) + 2x_(3) = 1 The system has

Consider the system of linear equations: x_(1) + 2x_(2) + x_(3) = 3 2x_(1) + 3x_(2) + x_(3) = 3 3x_(1) + 5x_(2) + 2x_(3) = 1 The system has

The set of all values of lamda for which the system of linear equations: 2x_1-2x_2+x_3=lamdax_1, 2x_1-3x_2+2x_3=lamdax_2, -x_1+2x_2=lamdax_3 has no trivial solution, (A) contains more than two elements (B) is in empty set (C) is a singleton (D) contains two elements

The set of all values of lambda for which the system of linear equations x - 2y - 2z = lambdax x + 2y + z = lambday -x -y = lambdaz has a non-trivial solution

The number of distinct real values of lamda for which the system of linear equations x + y + z = lamda x , x + y + z = lamday, x + y + z + lamda z has non - trival solution.

Using the matrix method, solve the following system of equations: x_(1)-2x_(2) + 3x_(3) =4, 2x_(1) + x_(2)-3x_(3) =5, -x_(1) + x_(2) + 2x_(3)=3

The sum of all intergral values of lamda for which (lamda^(2) + lamda -2) x ^(2) + (lamda +2) x lt 1 AA x in R, is:

The real value of k for which the system of equation 2k x-2y+3z=0, x+ky+2z=0, 2x+kz=0 has non-trivial solution is

Find the values of lamda and mu if both the roots of the equation (3lamda+1)x^(2)=(2lamda+3mu)x-3 are infinite.

The values of lamda for which the line y=x+ lamda touches the ellipse 9x^(2)+16y^(2)=144 , are

CENGAGE ENGLISH-DETERMINANTS-All Questions
  1. The set of the all values of lamda for which the system of linear equa...

    Text Solution

    |

  2. Prove that |cosalpha-cosbeta| le |alpha-beta|

    Text Solution

    |

  3. Statement 1: If b c+q r=c a+r p=a b+p q=-1, t h e n|a p a p b q b q c...

    Text Solution

    |

  4. If f(theta)=|sinthetacosthetasinthetacosthetasinthetacosthetacosthetas...

    Text Solution

    |

  5. If f(theta)=|[sin^2A,cot A,1],[sin^2B,cosB,1],[sin^2C,cosC,1]| , then...

    Text Solution

    |

  6. The roots of the equation |^x Cr^(n-1)Cr^(n-1)C(r-1)^(x+1)Cr^n Cr^n C(...

    Text Solution

    |

  7. Let Delta(x)=|[3,3x,3x^2+2a^2] , [3x, 3x^2+2a^2, 3x^3+6a^2x] , [3x^2+2...

    Text Solution

    |

  8. Consider a system of linear equation in three variables x,y,z a1x+b...

    Text Solution

    |

  9. If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of det...

    Text Solution

    |

  10. If g(x)=(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x) is a polynomial of degr...

    Text Solution

    |

  11. If (x)=|[x^2+4x-3 2x+4 13] [2x^2+5x-9 4x+5 26] [ 8x^2-6x+1 16 x-6 104]...

    Text Solution

    |

  12. If |y z-x^2z x-y^2x y-z^2x z-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|=|...

    Text Solution

    |

  13. Let f(n)=|nn+1n+2^n Pn^(n+1)P(n+1)^n Pn^n Cn^(n+1)C(n+1)^(n+2)C(n+2)| ...

    Text Solution

    |

  14. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  15. Let x<1, then value of |[x^2+2, 2x+1 ,1],[ 2x+1,x+2, 1],[ 3, 3 ,1]| is...

    Text Solution

    |

  16. Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-...

    Text Solution

    |

  17. Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonz...

    Text Solution

    |

  18. If e^(itheta)=costheta+isintheta, find the value of |[1,e^(ipi//3),e...

    Text Solution

    |

  19. Which of the following is not the root of the equation |[x,-6,-1],[ 2,...

    Text Solution

    |

  20. If A,B,C are the angles of a non right angled triangle ABC. Then find ...

    Text Solution

    |

  21. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |