Home
Class 12
MATHS
The function 'g' defined by g(x)=sin(sin...

The function 'g' defined by `g(x)=sin(sin^(-1){sqrt(x)}+cos (sin^(-1){sqrt(x)})-1` where {x} denotes the functional part function is

A

an even function

B

a periodic function

C

an odd function

D

neither even nor odd

Text Solution

Verified by Experts

The correct Answer is:
A, B

`g(x)=sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1`
`=sqrt({x})+cos(cos^(-1)sqrt(1-{x}))-1`
`=sqrt({x})+sqrt(1-{x})-1`
If `x in I` then {x} = 0
then g(x)=0
If `x in I` then `{-x}=1-{x}`
`rArr" "g(-x)=sqrt(1-{x})+sqrt({x})-1=g(x)`
`rArr" "g(-x)=g(x)`
`rArr" "g(x)" is even function."`
`"Also, "g(x)={{:(0",",x in I),(g(-x)",",x cancelinI):}`
Thus g(x) is periodic funciton
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] and {x} denotes greatest integer and fractional part of x respectively) is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(sin(sinx))+log_(3{x}+1)(x^2+1) , where {.} represents fractional part function, is:

The range of function f(x)=sin^(-1)(x-sqrt(x)) is equal to

The range of the function defined as f(x) = log_(3)((1)/(sqrt([cosx] - [sin x]))) , where [ ] represents the greatest integer function, is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)