Home
Class 12
MATHS
If 3x+2y=1 is a tangent to y=f(x) at x=1...

If `3x+2y=1` is a tangent to `y=f(x)` at `x=1//2`, then `lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))`

A

`1//3`

B

`1//2`

C

`1//6`

D

`1//7`

Text Solution

Verified by Experts

The correct Answer is:
A

Slope of `3x+2y=1" is "(-3)/(2)`
`rArr" "f'((1)/(2))=(-3)/(2)`
`therefore" "underset(xrarr0)(lim)(x(x-1))/(f((e^(2x))/(2))=f((e^(-2x))/(2)))`
`=lim(2x-1)/(e^(2x).f'((e^(2x))/(2))+e^(-2x)f'((e^(-2x))/(2)))`
`=(-1)/(f'((1)/(2))+f'((1)/(2)))=(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|8 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Subjective Type|2 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to

Evaluate: lim_(xrarr0) ((3+x)^(1//2)-(3-x)^(1//2))/(x)

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 then the value of lim_(xrarr0) (x^(2))/({f(x^(2))-5f(4x^(2))+4f(7x^(2))}) is

If the normal to y=f(x) at (0, 0) is given by y-x =0, then lim_(x to 0)(x^(2))/(f(x^(2))-20f(9x^(2))+2f(99x^(2))) , is

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to