Home
Class 12
MATHS
If the equation of the normal to the cur...

If the equation of the normal to the curve `y=f(x) at x=0` is `3x-y+3=0` then the value of
`lim_(xrarr0) (x^(2))/({f(x^(2))-5f(4x^(2))+4f(7x^(2))})` is

A

`-3`

B

`1//3`

C

3

D

`-1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{x^2}{f(x^2) - 5f(4x^2) + 4f(7x^2)} \] Given that the equation of the normal to the curve \(y = f(x)\) at \(x = 0\) is \(3x - y + 3 = 0\), we can rewrite this as: \[ y = 3x + 3 \] From this, we can identify the slope of the normal line, which is \(3\). The slope of the tangent line at \(x = 0\) is the negative reciprocal of the slope of the normal. Therefore, we have: \[ f'(0) = -\frac{1}{3} \] Next, we will use Taylor's expansion to approximate \(f(x^2)\), \(f(4x^2)\), and \(f(7x^2)\) around \(x = 0\): 1. **Taylor Expansion**: \[ f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + O(x^3) \] Using this expansion, we can write: - For \(f(x^2)\): \[ f(x^2) \approx f(0) + f'(0)x^2 + \frac{f''(0)}{2}x^4 \] - For \(f(4x^2)\): \[ f(4x^2) \approx f(0) + f'(0)(4x^2) + \frac{f''(0)}{2}(4x^2)^2 = f(0) + 4f'(0)x^2 + 8f''(0)x^4 \] - For \(f(7x^2)\): \[ f(7x^2) \approx f(0) + f'(0)(7x^2) + \frac{f''(0)}{2}(7x^2)^2 = f(0) + 7f'(0)x^2 + \frac{49}{2}f''(0)x^4 \] 2. **Substituting into the limit**: Now we substitute these approximations into the limit expression: \[ f(x^2) - 5f(4x^2) + 4f(7x^2) \approx \left(f(0) + f'(0)x^2 + \frac{f''(0)}{2}x^4\right) - 5\left(f(0) + 4f'(0)x^2 + 8f''(0)x^4\right) + 4\left(f(0) + 7f'(0)x^2 + \frac{49}{2}f''(0)x^4\right) \] Simplifying this gives: \[ = f(0) + f'(0)x^2 + \frac{f''(0)}{2}x^4 - 5f(0) - 20f'(0)x^2 - 40f''(0)x^4 + 4f(0) + 28f'(0)x^2 + 98f''(0)x^4 \] Combining like terms: \[ = (f(0) - 5f(0) + 4f(0)) + (f'(0) - 20f'(0) + 28f'(0))x^2 + \left(\frac{f''(0)}{2} - 40f''(0) + 98f''(0)\right)x^4 \] This simplifies to: \[ = 0 + 9f'(0)x^2 + \left(\frac{f''(0)}{2} + 58f''(0)\right)x^4 \] Thus, we have: \[ f(x^2) - 5f(4x^2) + 4f(7x^2) \approx 9f'(0)x^2 + O(x^4) \] 3. **Finding the limit**: Now substituting back into the limit: \[ \lim_{x \to 0} \frac{x^2}{9f'(0)x^2 + O(x^4)} = \lim_{x \to 0} \frac{1}{9f'(0) + O(x^2)} = \frac{1}{9f'(0)} \] Substituting \(f'(0) = -\frac{1}{3}\): \[ \lim_{x \to 0} \frac{1}{9 \cdot -\frac{1}{3}} = \frac{1}{-3} = -\frac{1}{3} \] Thus, the final answer is: \[ \boxed{-\frac{1}{3}} \]

To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{x^2}{f(x^2) - 5f(4x^2) + 4f(7x^2)} \] Given that the equation of the normal to the curve \(y = f(x)\) at \(x = 0\) is \(3x - y + 3 = 0\), we can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|8 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Subjective Type|2 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If the normal to y=f(x) at (0, 0) is given by y-x =0, then lim_(x to 0)(x^(2))/(f(x^(2))-20f(9x^(2))+2f(99x^(2))) , is

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to

If 3x+2y=1 is a tangent to y=f(x) at x=1//2 , then lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)