Home
Class 12
MATHS
Let f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] ...

Let `f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] , [2x^2-1,3x^5-1,7x^8-1]|` then the equation of `f(x)=0` has

A

f(x) = 0 has at least two real roots

B

f'(x) =0 has at least one real root.

C

f(x) is many-one function

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by the determinant: \[ f(x) = \begin{vmatrix} 1 & 1 & 1 \\ 3 - x & 5 - 3x^2 & 3x^3 - 1 \\ 2x^2 - 1 & 3x^5 - 1 & 7x^8 - 1 \end{vmatrix} \] We want to find the values of \(x\) for which \(f(x) = 0\). ### Step 1: Evaluate \(f(0)\) Substituting \(x = 0\): \[ f(0) = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & -1 \\ -1 & -1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} 5 & -1 \\ -1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & -1 \\ -1 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 5 \\ -1 & -1 \end{vmatrix} \] Calculating each of the smaller determinants: 1. \(\begin{vmatrix} 5 & -1 \\ -1 & -1 \end{vmatrix} = 5 \cdot (-1) - (-1) \cdot (-1) = -5 - 1 = -6\) 2. \(\begin{vmatrix} 3 & -1 \\ -1 & -1 \end{vmatrix} = 3 \cdot (-1) - (-1) \cdot (-1) = -3 - 1 = -4\) 3. \(\begin{vmatrix} 3 & 5 \\ -1 & -1 \end{vmatrix} = 3 \cdot (-1) - 5 \cdot (-1) = -3 + 5 = 2\) Now substituting back into the determinant: \[ f(0) = 1 \cdot (-6) - 1 \cdot (-4) + 1 \cdot 2 = -6 + 4 + 2 = 0 \] ### Step 2: Evaluate \(f(1)\) Substituting \(x = 1\): \[ f(1) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 6 \end{vmatrix} \] Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} 2 & 2 \\ 2 & 6 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 2 \\ 1 & 6 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} \] Calculating each of the smaller determinants: 1. \(\begin{vmatrix} 2 & 2 \\ 2 & 6 \end{vmatrix} = 2 \cdot 6 - 2 \cdot 2 = 12 - 4 = 8\) 2. \(\begin{vmatrix} 2 & 2 \\ 1 & 6 \end{vmatrix} = 2 \cdot 6 - 2 \cdot 1 = 12 - 2 = 10\) 3. \(\begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} = 2 \cdot 2 - 2 \cdot 1 = 4 - 2 = 2\) Now substituting back into the determinant: \[ f(1) = 1 \cdot 8 - 1 \cdot 10 + 1 \cdot 2 = 8 - 10 + 2 = 0 \] ### Conclusion We found that \(f(0) = 0\) and \(f(1) = 0\). Therefore, the function \(f(x) = 0\) has at least two roots, which are \(x = 0\) and \(x = 1\). ### Final Answer The equation \(f(x) = 0\) has at least two real roots.

To solve the problem, we need to analyze the function given by the determinant: \[ f(x) = \begin{vmatrix} 1 & 1 & 1 \\ 3 - x & 5 - 3x^2 & 3x^3 - 1 \\ 2x^2 - 1 & 3x^5 - 1 & 7x^8 - 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Subjective Type|2 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Comprehension Type|5 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Comprehension Type|5 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

if f(x)=|[x-3,2x^2-18,3x^3-81],[x-5,2x^2-50,4x^3-500],[1,2,3]| then f(1)f(3)+f(3)f(5)+f(5)f(1) is equal to

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

Let f(x)=x^2-5x+6 then find f(A) when A=[[2,0,1] , [2,1,3] , [1, -1, 0]]

If f(1) = 3, f' (1) = -1/3 , then the derivative of {x^11 + f (x)}^-2 at x = 1, is

Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of b for which f(x) has greatest value at x=1 is

For x in RR - {0, 1}, let f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x) be three given functions. If a function, J(x) satisfies (f_2oJ_of_1)(x) = f_3(x) then J(x) is equal to :

Let f(x) = x^(3) + 3x^(2) + 9x + 6 sin x then roots of the equation (1)/(x-f(1))+(2)/(x-f(2))+(3)/(x-f(3))=0 , has

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

Let f(x)=x^3-3x^2+ 3x + 4 , comment on the monotonic behaviour of f(x) at x=0 x=1