Home
Class 12
MATHS
Let f(x)=1-x-x^(3). Then, the real value...

Let `f(x)=1-x-x^(3)`. Then, the real values of x satisfying the inequality,
`1-f(x)-f^(3)(x) gt f(1-5x)`, are

A

`(-2,0)`

B

`(2,oo)`

C

`(0,2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=1-x-x^(3)`
`rArr" "f'(x)=-1-3x^(2)lt0` for all x
Now `1-f(x)-f^(3)(x)gtf(1-5x)`
`rArr" "f(f(x))gtf(1-5x)`
`rArr" "f(x)lt1-5x" (as f(x) is decreasing)"`
`rArr" "1-x-x^(3)lt1-5x`
`rArr" "x^(3)-4xgt0`
`rArr" "x(x-2)(x+2)gt0`
`rArr" "x in (-2,0)uu(2,oo)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Let f(x)=1-x-x^3 .Find all real values of x satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If f is symmetrical about x = 1, find the real values of x satisfying the equation f(x)=f((x+1)/(x+2)) .

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :

If f(x)= -x^(3)-3x^(2)-2x+a,a in R then the real values of x satisfying f(x^(2)+1)gtf(2x^(2)+2x+3) will be

Let f(x) be a real valued function satisfying the relation f(x/y) = f(x) - f(y) and lim_(x rarr 0) f(1+x)/x = 3. The area bounded by the curve y = f(x), y-axis and the line y = 3 is equal to

Let f(x)=30-2x -x^3 , the number of the positive integral values of x which does satisfy f(f(f(x)))) gt f(f(-x)) is _______.

Let f(x)=a^x-xlna , a>1. Then the complete set of real values of x for which f'(x)>0 is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :