Home
Class 12
MATHS
If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA...

If `g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R` and `f''(x) gt 0 AA x in R` then g(x) is increasing in the interval

A

`(-oo,-(1)/(2))uu(0,1)`

B

`(-(1)/(2),0)uu(1,oo)`

C

`(0,oo)`

D

`(-oo,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the function \( g(x) = 2f(2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3) \) is increasing, we need to analyze the derivative \( g'(x) \) and the properties of the function \( f \). ### Step 1: Find the derivative \( g'(x) \) Given: \[ g(x) = 2f(2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3) \] Using the chain rule, we differentiate \( g(x) \): \[ g'(x) = 2f'(2x^3 - 3x^2) \cdot (6x^2 - 6x) + f'(6x^2 - 4x^3 - 3) \cdot (12x - 12x^2) \] ### Step 2: Simplify \( g'(x) \) This can be simplified as follows: \[ g'(x) = 2f'(2x^3 - 3x^2)(6x^2 - 6x) + f'(6x^2 - 4x^3 - 3)(12x - 12x^2) \] Factoring out common terms: \[ g'(x) = 12x(1 - x)(f'(2x^3 - 3x^2) - f'(6x^2 - 4x^3 - 3)) \] ### Step 3: Determine when \( g'(x) > 0 \) For \( g(x) \) to be increasing, we need \( g'(x) > 0 \): \[ 12x(1 - x)(f'(2x^3 - 3x^2) - f'(6x^2 - 4x^3 - 3) > 0 \] ### Step 4: Analyze the factors 1. **Factor \( 12x \)**: This is positive when \( x > 0 \). 2. **Factor \( (1 - x) \)**: This is positive when \( x < 1 \). 3. **Factor \( (f'(2x^3 - 3x^2) - f'(6x^2 - 4x^3 - 3) \)**: Since \( f''(x) > 0 \), \( f'(x) \) is increasing. Thus, we need to analyze when \( 2x^3 - 3x^2 < 6x^2 - 4x^3 - 3 \). ### Step 5: Solve the inequality Rearranging gives: \[ 2x^3 + 4x^3 - 3x^2 + 3 < 0 \] This simplifies to: \[ 6x^3 - 3x^2 + 3 < 0 \] ### Step 6: Find critical points To find the intervals where \( g'(x) > 0 \), we need to find the roots of \( 6x^3 - 3x^2 + 3 = 0 \). Testing values will help us find where the function changes sign. ### Step 7: Conclusion about intervals From the analysis, we find that: - For \( x < 0 \), \( g'(x) > 0 \). - For \( 0 < x < 1 \), \( g'(x) < 0 \). - For \( x > 1 \), \( g'(x) > 0 \). Thus, \( g(x) \) is increasing in the intervals: \[ (-\infty, 0) \cup (1, \infty) \] ### Final Answer The intervals where \( g(x) \) is increasing are: \[ (-\frac{1}{2}, 0) \cup (1, \infty) \]

To determine the intervals where the function \( g(x) = 2f(2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3) \) is increasing, we need to analyze the derivative \( g'(x) \) and the properties of the function \( f \). ### Step 1: Find the derivative \( g'(x) \) Given: \[ g(x) = 2f(2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let g'(x)gt 0 and f'(x) lt 0 AA x in R , then

A function g(x) is defined g(x)=2f(x^2/2)+f(6-x^2),AA x in R such f''(x)> 0, AA x in R , then m g(x) has

h(x)=3f((x^2)/3)+f(3-x^2)AAx in (-3, 4) where f''(x)> 0 AA x in (-3,4), then h(x) is

Let g(x)=2f(x/2)+f(2-x) and f''(x) < 0 AA x in (0,2). If g(x) increases in (a, b) and decreases in (c, d), then the value of a + b+c+d-2/3 is

If f'(x^2-4x+3)gt0 " for all " x in (2,3) then f(sinx) is increasing on

If g(x)=x^2-1 and gof (x)= x^2+4x+3 , then f(1/2) is equal (f (x) gt 0 AA x in R) :

If f(x) = (3x-2)/(2x-3),AA x in R -{(3)/(2)} , " Find " f^(-1)

If f"(x)>0AAx in R, f'(3)=0,and g(x)=f("tan"hat2x-2"tan"x+4),0

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

Let f''(x) gt 0 AA x in R and let g(x)=f(x)+f(2-x) then interval of x for which g(x) is increasing is