Home
Class 12
MATHS
If x(1),x(2) in (0,(pi)/(2)), then (tan(...

If `x_(1),x_(2) in (0,(pi)/(2))`, then `(tan_(x_(2)))/(tanx_(1))` is (where `x_(1)lt x_(2)`)

A

`lt (x_(1))/(x_(2))`

B

`=(x_(1))/(x_(2))`

C

`ltx_(1) x_(2)`

D

`gt(x_(2))/(x_(1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( \tan(x) \) over the interval \( (0, \frac{\pi}{2}) \) and its behavior with respect to the given conditions. ### Step-by-Step Solution: 1. **Understanding the Interval**: We know that \( x_1, x_2 \in (0, \frac{\pi}{2}) \) and \( x_1 < x_2 \). This means both \( x_1 \) and \( x_2 \) are positive angles less than \( \frac{\pi}{2} \). 2. **Behavior of the Tangent Function**: The function \( \tan(x) \) is known to be an increasing function in the interval \( (0, \frac{\pi}{2}) \). This means that if \( x_1 < x_2 \), then \( \tan(x_1) < \tan(x_2) \). 3. **Setting Up the Ratio**: We need to analyze the ratio \( \frac{\tan(x_2)}{\tan(x_1)} \). Since \( \tan(x) \) is increasing, we can conclude: \[ \tan(x_2) > \tan(x_1) \] 4. **Conclusion About the Ratio**: Since \( \tan(x_2) > \tan(x_1) \), it follows that: \[ \frac{\tan(x_2)}{\tan(x_1)} > 1 \] 5. **Final Result**: Therefore, we conclude that: \[ \frac{\tan(x_2)}{\tan(x_1)} > 1 \] ### Final Answer: The expression \( \frac{\tan(x_2)}{\tan(x_1)} \) is greater than 1. ---

To solve the problem, we need to analyze the function \( \tan(x) \) over the interval \( (0, \frac{\pi}{2}) \) and its behavior with respect to the given conditions. ### Step-by-Step Solution: 1. **Understanding the Interval**: We know that \( x_1, x_2 \in (0, \frac{\pi}{2}) \) and \( x_1 < x_2 \). This means both \( x_1 \) and \( x_2 \) are positive angles less than \( \frac{\pi}{2} \). 2. **Behavior of the Tangent Function**: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

For 0

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where " x_(1) lt x_(2) lt x_(3) " , then " 2x_(1) + x_(2) + x_(3)^(2) is equal to

(tan(pi/4+x))/(tan(pi/4-x)) = ((1+tanx)/(1-tanx))^(2)

For x in (0,(pi)/(2)) prove that "sin"^(2) x lt x^(2) lt " tan"^(2) x

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then 2( x_(1) + x_(2) ) is equal to

int_(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ dx

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these

Let f'(x)gt0andf''(x)gt0 where x_(1)ltx_(2). Then show f((x_(1)+x_(2))/(2))lt(f(x_(1))+(x_(2)))/(2).

Prove that: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2