Home
Class 12
MATHS
If sinx+xge|k|x^(2), AA x in [0,(pi)/(2)...

If `sinx+xge|k|x^(2), AA x in [0,(pi)/(2)]`, then the greatest value of k is

A

`(-2(2+pi))/(pi^(2))`

B

`(2(2+pi))/(pi^(2))`

C

can't be determined finitely

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the greatest value of \( k \) such that the inequality \( \sin x + x \geq |k| x^2 \) holds for all \( x \) in the interval \( [0, \frac{\pi}{2}] \). ### Step-by-Step Solution: 1. **Define the Functions**: Let \( f(x) = \sin x + x \) and \( g(x) = |k| x^2 \). 2. **Analyze \( f(x) \)**: - Find the first derivative: \[ f'(x) = \cos x + 1 \] - Since \( \cos x \geq 0 \) for \( x \in [0, \frac{\pi}{2}] \), we have \( f'(x) > 0 \). Thus, \( f(x) \) is an increasing function on the interval. 3. **Analyze the Second Derivative**: - Find the second derivative: \[ f''(x) = -\sin x \] - Since \( -\sin x \leq 0 \) for \( x \in [0, \frac{\pi}{2}] \), it implies that \( f(x) \) is concave down on this interval. 4. **Evaluate \( f(x) \) at the Endpoints**: - Calculate \( f(0) \): \[ f(0) = \sin(0) + 0 = 0 \] - Calculate \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \frac{\pi}{2} = 1 + \frac{\pi}{2} \] 5. **Set up the Inequality**: - We need \( f(x) \geq g(x) \) for all \( x \in [0, \frac{\pi}{2}] \). - Specifically, at \( x = \frac{\pi}{2} \): \[ 1 + \frac{\pi}{2} \geq |k| \left(\frac{\pi}{2}\right)^2 \] - This simplifies to: \[ 1 + \frac{\pi}{2} \geq |k| \cdot \frac{\pi^2}{4} \] 6. **Solve for \( |k| \)**: - Rearranging gives: \[ |k| \leq \frac{4(1 + \frac{\pi}{2})}{\pi^2} \] - Simplifying further: \[ |k| \leq \frac{4 + 2\pi}{\pi^2} \] 7. **Determine the Greatest Value of \( k \)**: - The greatest value of \( k \) is: \[ k = \frac{4 + 2\pi}{\pi^2} \] ### Final Answer: The greatest value of \( k \) is: \[ k = \frac{4 + 2\pi}{\pi^2} \]

To solve the problem, we need to find the greatest value of \( k \) such that the inequality \( \sin x + x \geq |k| x^2 \) holds for all \( x \) in the interval \( [0, \frac{\pi}{2}] \). ### Step-by-Step Solution: 1. **Define the Functions**: Let \( f(x) = \sin x + x \) and \( g(x) = |k| x^2 \). 2. **Analyze \( f(x) \)**: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If the area bounded by y=x, y=sinx and x=(pi)/(2) is ((pi^(2))/(k)-1) sq. units then the value of k is equal to

The sum of the roots of the equation |sqrt3cos x-sinx|=2" in "[0, 4pi] is kpi , then the value of 6k is

Prove that sinx+2xgeq(3x(x+1))/pi, AA x in [0,pi/2] (Justify the inequality, if any used).

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

If x_i gt 0 for 1leilen and x_1+x_2+x_3+…+x_n=pi then the greatest value of the sum sinx_1+sinx_2+sinx_3+…+sin_n=… (A) n (B) pi (C) nsin\ pi/n (D) none of these

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is