Home
Class 12
MATHS
The greatest possible value of the expre...

The greatest possible value of the expression `tanx+cotx+cosx` on the interval `[pi/6, pi/4]` is (a) `(12)/(5)sqrt2` (b) `(11)/(6)sqrt2` (c) `(12)/(5)sqrt3` (d) `(11)/(6)sqrt3`

A

`(12)/(5)sqrt2`

B

`(11)/(6)sqrt2`

C

`(12)/(5)sqrt3`

D

`(11)/(6)sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest possible value of the expression \( \tan x + \cot x + \cos x \) on the interval \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \), we will follow these steps: ### Step 1: Rewrite the Expression The expression can be rewritten using trigonometric identities: \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, the expression becomes: \[ \tan x + \cot x + \cos x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \cos x \] ### Step 2: Combine Terms Next, we combine the terms under a common denominator: \[ \tan x + \cot x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\sin x \cos x} \] So, the expression now is: \[ \frac{1}{\sin x \cos x} + \cos x \] ### Step 3: Use the Identity for \( \sin 2x \) We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can express \( \sin x \cos x \) as: \[ \sin x \cos x = \frac{1}{2} \sin 2x \] This allows us to rewrite the expression as: \[ \frac{2}{\sin 2x} + \cos x \] ### Step 4: Analyze the Function Now, we need to analyze the function \( f(x) = \frac{2}{\sin 2x} + \cos x \) over the interval \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \). ### Step 5: Determine Monotonicity To find the maximum value, we need to check the behavior of \( f(x) \) in the given interval. We note that: - \( \sin 2x \) is increasing in \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \). - \( \cos x \) is decreasing in \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \). Since \( \frac{2}{\sin 2x} \) is increasing and \( \cos x \) is decreasing, the overall function \( f(x) \) is decreasing in this interval. ### Step 6: Evaluate at the Endpoints To find the maximum value, we evaluate \( f(x) \) at the endpoints of the interval: 1. At \( x = \frac{\pi}{6} \): \[ f\left(\frac{\pi}{6}\right) = \frac{2}{\sin\left(\frac{\pi}{3}\right)} + \cos\left(\frac{\pi}{6}\right) = \frac{2}{\frac{\sqrt{3}}{2}} + \frac{\sqrt{3}}{2} = \frac{4}{\sqrt{3}} + \frac{\sqrt{3}}{2} \] Converting to a common denominator: \[ = \frac{8 + 3}{2\sqrt{3}} = \frac{11}{2\sqrt{3}} \] 2. At \( x = \frac{\pi}{4} \): \[ f\left(\frac{\pi}{4}\right) = \frac{2}{\sin\left(\frac{\pi}{2}\right)} + \cos\left(\frac{\pi}{4}\right) = 2 + \frac{\sqrt{2}}{2} = 2 + \frac{\sqrt{2}}{2} \] ### Step 7: Compare Values Now we compare the values obtained: - \( f\left(\frac{\pi}{6}\right) = \frac{11}{2\sqrt{3}} \) - \( f\left(\frac{\pi}{4}\right) = 2 + \frac{\sqrt{2}}{2} \) ### Step 8: Conclusion After evaluating both endpoints, we find that the maximum value occurs at \( x = \frac{\pi}{6} \): \[ \frac{11}{2\sqrt{3}} = \frac{11\sqrt{3}}{6} \] Thus, the greatest possible value of the expression \( \tan x + \cot x + \cos x \) on the interval \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \) is: \[ \boxed{\frac{11}{6}\sqrt{3}} \]

To find the greatest possible value of the expression \( \tan x + \cot x + \cos x \) on the interval \( \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \), we will follow these steps: ### Step 1: Rewrite the Expression The expression can be rewritten using trigonometric identities: \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, the expression becomes: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y=sinx+cosx and y=|cosx−sinx| over the interval [0,pi/2] is (a) 4(sqrt2-1) (b) 2sqrt2(sqrt2-1) (c) 2(sqrt2+1) (d) 2sqrt2(sqrt2+1)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

A pair of tangents is drawn to a unit circle with center at the origin and these tangents intersect at A enclosing an angle of 60^0 . The area enclosed by these tangents and the arc of the circle is (a) 2/(sqrt(3))-pi/6 (b) sqrt(3)-pi/3 (c) pi/3-(sqrt(3))/6 (d) sqrt(3)(1-pi/6)

The least value of the function f(x)= 2cosx +x in the closed interval [0,pi/2] is: A. 2 B. pi/6 + sqrt3 C. pi/2 D. The least value does not exist

The value of the expression ((sin3theta)/(sintheta))^2-((cos3theta)/(costheta))^2,w h e ntheta=(7. 5)^0, is a. 4(sqrt(3)+1) b. (sqrt(3)-1) c. 2(sqrt(6)+sqrt(2)) d. 8/(sqrt(6)-sqrt(2))

The area of the circle x^2+y^2=16 exterior to the parabola y^2=6x is(A) 4/3(4pi-sqrt(3)) (B) 4/3(4pi+sqrt(3)) (C) 4/3(8pi-sqrt(3)) (D) 4/3(8pi+sqrt(3))

If 5cosx+12cosy=13 , then the maximum value of 5sinx+12siny is (A) 12 (B) sqrt(120) (C) sqrt(20) (D) 13

Which is greater sqrt(11)-sqrt(6) or sqrt(17)-sqrt(12) ?

How many solutions does the equation sec x-1 =(sqrt2-1)tanx have in the interval (0,6 pi] ? (A) 6 (B) 5 (C) 10 (D) 9