Home
Class 12
MATHS
Let f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2/...

Let `f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):}`. The total number of maxima and minima of f(x) is

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the total number of maxima and minima of the piecewise function \( f(x) \), we will follow these steps: ### Step 1: Define the Function The function is defined as: \[ f(x) = \begin{cases} (x + 1)^3 & \text{for } -2 < x \leq -1 \\ x^{2/3} - 1 & \text{for } -1 < x \leq 1 \\ -(x - 1)^2 & \text{for } 1 < x < 2 \end{cases} \] ### Step 2: Find the Derivative We need to find the derivative \( f'(x) \) for each piece of the function. 1. For \( -2 < x \leq -1 \): \[ f'(x) = 3(x + 1)^2 \] 2. For \( -1 < x \leq 1 \): \[ f'(x) = \frac{2}{3}x^{-1/3} \] 3. For \( 1 < x < 2 \): \[ f'(x) = -2(x - 1) \] ### Step 3: Find Critical Points Set the derivative equal to zero to find critical points: 1. For \( -2 < x \leq -1 \): \[ 3(x + 1)^2 = 0 \implies x + 1 = 0 \implies x = -1 \] (This point is at the boundary and will be checked later.) 2. For \( -1 < x \leq 1 \): \[ \frac{2}{3}x^{-1/3} = 0 \implies \text{No solution in this interval.} \] 3. For \( 1 < x < 2 \): \[ -2(x - 1) = 0 \implies x - 1 = 0 \implies x = 1 \] (This point is also at the boundary.) ### Step 4: Check the Boundary Points We need to check the behavior of the function at the boundaries and critical points: - At \( x = -1 \): - \( f(-1) = (-1 + 1)^3 = 0 \) - At \( x = 1 \): - \( f(1) = 1^{2/3} - 1 = 0 \) ### Step 5: Analyze the Intervals Now, we will analyze the sign of \( f'(x) \) in the intervals: 1. For \( -2 < x < -1 \): - \( f'(x) > 0 \) (increasing) 2. For \( -1 < x < 1 \): - \( f'(x) > 0 \) (increasing) 3. For \( 1 < x < 2 \): - \( f'(x) < 0 \) (decreasing) ### Step 6: Determine Maxima and Minima From the analysis: - At \( x = -1 \): \( f(x) \) is increasing before and at this point, so it is not a maximum or minimum. - At \( x = 1 \): \( f(x) \) is increasing before and decreasing after, indicating a local maximum. ### Conclusion The total number of maxima and minima of the function \( f(x) \) is: - **1 maximum** at \( x = 1 \) - **0 minima** Thus, the total number of maxima and minima of \( f(x) \) is **1**. ---

To find the total number of maxima and minima of the piecewise function \( f(x) \), we will follow these steps: ### Step 1: Define the Function The function is defined as: \[ f(x) = \begin{cases} (x + 1)^3 & \text{for } -2 < x \leq -1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then

Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1lexlt3),(x+2,3lexle5):} then, find f(g(x)) .

Let f(x)={:{(6","xle1),(7-x","xgt1):} 'then for f(x) at x=1 discuss maxima and minima.

The number of points of maxima/minima of f(x) =x(x + 1) (x +2) (x + 3) is