Home
Class 12
MATHS
The minimum value of the function f(x) ...

The minimum value of the function `f(x) =tan(x +pi/6)/tanx` is:

A

1

B

0

C

`(1)/(2)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \frac{\tan(x + \frac{\pi}{6})}{\tan x} \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \frac{\tan(x + \frac{\pi}{6})}{\tan x} \] ### Step 2: Differentiate the function To find the critical points, we need to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{\tan(x + \frac{\pi}{6})}{\tan x} \right) \] Using the quotient rule, we have: \[ f'(x) = \frac{\tan x \cdot \sec^2(x + \frac{\pi}{6}) - \tan(x + \frac{\pi}{6}) \cdot \sec^2 x}{\tan^2 x} \] ### Step 3: Set the derivative to zero To find the critical points, we set \( f'(x) = 0 \): \[ \tan x \cdot \sec^2(x + \frac{\pi}{6}) - \tan(x + \frac{\pi}{6}) \cdot \sec^2 x = 0 \] This implies: \[ \tan x \cdot \sec^2(x + \frac{\pi}{6}) = \tan(x + \frac{\pi}{6}) \cdot \sec^2 x \] ### Step 4: Solve for critical points This equation can be complex to solve directly, but we can analyze the function for specific values. We will check \( x = \frac{\pi}{6} \): \[ f\left(\frac{\pi}{6}\right) = \frac{\tan\left(\frac{\pi}{6} + \frac{\pi}{6}\right)}{\tan\left(\frac{\pi}{6}\right)} = \frac{\tan\left(\frac{\pi}{3}\right)}{\tan\left(\frac{\pi}{6}\right)} = \frac{\sqrt{3}}{\frac{1}{\sqrt{3}}} = 3 \] ### Step 5: Verify if it is a minimum To confirm that this is a minimum, we can check the second derivative or analyze the behavior of \( f'(x) \) around \( x = \frac{\pi}{6} \). If \( f'(x) \) changes from negative to positive at this point, then it is a local minimum. ### Conclusion Thus, the minimum value of the function \( f(x) \) is: \[ \text{Minimum value} = 3 \]

To find the minimum value of the function \( f(x) = \frac{\tan(x + \frac{\pi}{6})}{\tan x} \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \frac{\tan(x + \frac{\pi}{6})}{\tan x} \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (pi)/(2)) is

Find the maximum and minimum values of the function f(x)=tanx-2x .

The function f(x) = tan^(-1)(tanx) is

Minimum value of the function f(x)= (1/x)^(1//x) is:

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

The difference between the maximum and minimum value of the function f(x)=3sin^4x-cos^6x is :

The difference between the maximum and minimum value of the function f(x)=3sin^4x-cos^6x is :

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .