Home
Class 12
MATHS
Let f(x)=(x^(2)+2)/([x]),1 le x le3, whe...

Let `f(x)=(x^(2)+2)/([x]),1 le x le3`, where [.] is the greatest integer function. Then the least value of f(x) is

A

2

B

3

C

`3//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the function \( f(x) = \frac{x^2 + 2}{[x]} \) for \( 1 \leq x \leq 3 \), where \([x]\) is the greatest integer function, we will analyze the function on the intervals defined by the greatest integer function. ### Step 1: Identify the intervals The greatest integer function \([x]\) takes integer values. For \( 1 \leq x < 2 \), \([x] = 1\). For \( 2 \leq x < 3 \), \([x] = 2\). At \( x = 3 \), \([x] = 3\). Therefore, we will evaluate \( f(x) \) in the intervals: - \( 1 \leq x < 2 \) (where \([x] = 1\)) - \( 2 \leq x < 3 \) (where \([x] = 2\)) - At \( x = 3 \) (where \([x] = 3\)) ### Step 2: Calculate \( f(x) \) for \( 1 \leq x < 2 \) In this interval, we have: \[ f(x) = \frac{x^2 + 2}{1} = x^2 + 2 \] Now, we need to find the minimum value of \( f(x) \) in this interval. The function \( x^2 + 2 \) is a parabola opening upwards, and its minimum occurs at the left endpoint \( x = 1 \): \[ f(1) = 1^2 + 2 = 3 \] ### Step 3: Calculate \( f(x) \) for \( 2 \leq x < 3 \) In this interval, we have: \[ f(x) = \frac{x^2 + 2}{2} \] Now, we need to find the minimum value of \( f(x) \) in this interval. The function \( \frac{x^2 + 2}{2} \) is also a parabola opening upwards. We will evaluate it at the endpoints: - At \( x = 2 \): \[ f(2) = \frac{2^2 + 2}{2} = \frac{4 + 2}{2} = \frac{6}{2} = 3 \] - At \( x = 3 \): \[ f(3) = \frac{3^2 + 2}{2} = \frac{9 + 2}{2} = \frac{11}{2} = 5.5 \] ### Step 4: Compare the values Now we compare the minimum values found in each interval: - For \( 1 \leq x < 2 \), the minimum value is \( 3 \). - For \( 2 \leq x < 3 \), the minimum value is \( 3 \). - At \( x = 3 \), the value is \( 5.5 \). ### Conclusion The least value of \( f(x) \) in the interval \( 1 \leq x \leq 3 \) is: \[ \boxed{3} \]

To find the least value of the function \( f(x) = \frac{x^2 + 2}{[x]} \) for \( 1 \leq x \leq 3 \), where \([x]\) is the greatest integer function, we will analyze the function on the intervals defined by the greatest integer function. ### Step 1: Identify the intervals The greatest integer function \([x]\) takes integer values. For \( 1 \leq x < 2 \), \([x] = 1\). For \( 2 \leq x < 3 \), \([x] = 2\). At \( x = 3 \), \([x] = 3\). Therefore, we will evaluate \( f(x) \) in the intervals: - \( 1 \leq x < 2 \) (where \([x] = 1\)) - \( 2 \leq x < 3 \) (where \([x] = 2\)) - At \( x = 3 \) (where \([x] = 3\)) ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then A. (a)f (x) is increasing function B. f (x) is decreasing function C. The greatest value of f (x) is (1)/(3)xx16.21 D. The least value of f (x) is 2

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Draw the graph of the function f(x) = x-|x2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be