Home
Class 12
MATHS
The function f(x)=x^(5)-5x^(4)+5x^(3) fi...

The function `f(x)=x^(5)-5x^(4)+5x^(3)` find maximum and minimum value

A

One minima and two maxima

B

Two minima and one maxima

C

Two minima and two maxima

D

One minima and one maxima

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = x^5 - 5x^4 + 5x^3 \), we will follow these steps: ### Step 1: Find the first derivative We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x^5 - 5x^4 + 5x^3) \] Using the power rule, we get: \[ f'(x) = 5x^4 - 20x^3 + 15x^2 \] ### Step 2: Set the first derivative to zero To find the critical points, we set the first derivative equal to zero: \[ 5x^4 - 20x^3 + 15x^2 = 0 \] Factoring out the common term \( 5x^2 \): \[ 5x^2(x^2 - 4x + 3) = 0 \] This gives us: \[ 5x^2 = 0 \quad \text{or} \quad x^2 - 4x + 3 = 0 \] From \( 5x^2 = 0 \), we have \( x = 0 \). Now, we solve the quadratic equation \( x^2 - 4x + 3 = 0 \): \[ (x - 1)(x - 3) = 0 \] Thus, we find \( x = 1 \) and \( x = 3 \). ### Step 3: Find the second derivative Next, we find the second derivative to determine the nature of the critical points: \[ f''(x) = \frac{d}{dx}(5x^4 - 20x^3 + 15x^2) \] Calculating the second derivative gives us: \[ f''(x) = 20x^3 - 60x^2 + 30x \] ### Step 4: Evaluate the second derivative at critical points Now, we evaluate the second derivative at the critical points \( x = 0, 1, 3 \): 1. For \( x = 0 \): \[ f''(0) = 20(0)^3 - 60(0)^2 + 30(0) = 0 \] 2. For \( x = 1 \): \[ f''(1) = 20(1)^3 - 60(1)^2 + 30(1) = 20 - 60 + 30 = -10 \quad (\text{less than 0, local maximum}) \] 3. For \( x = 3 \): \[ f''(3) = 20(3)^3 - 60(3)^2 + 30(3) = 20(27) - 60(9) + 90 = 540 - 540 + 90 = 90 \quad (\text{greater than 0, local minimum}) \] ### Step 5: Conclusion From our evaluations, we conclude: - There is a local maximum at \( x = 1 \). - There is a local minimum at \( x = 3 \). ### Step 6: Find the maximum and minimum values Now, we calculate the function values at these critical points: 1. For \( x = 1 \): \[ f(1) = 1^5 - 5(1^4) + 5(1^3) = 1 - 5 + 5 = 1 \] 2. For \( x = 3 \): \[ f(3) = 3^5 - 5(3^4) + 5(3^3) = 243 - 405 + 135 = -27 \] ### Final Answer - Maximum value: \( f(1) = 1 \) - Minimum value: \( f(3) = -27 \) ---

To find the maximum and minimum values of the function \( f(x) = x^5 - 5x^4 + 5x^3 \), we will follow these steps: ### Step 1: Find the first derivative We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(x^5 - 5x^4 + 5x^3) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

For what values of x, the function f(x) = x^(5)-5x^(4)+5x^(3)-1 is maximum or minimum? Prove that at x = 0, the function is neither maximum nor minimum.

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1 . Also, find the corresponding local maximum and local minimum values

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1 . Also, find the corresponding local maximum and local minimum values

Find the points of local maxima, local minima and the points of inflection of the function f(x)=x^5-5x^4+5x^3-1. Also, find the corresponding local maximum and local minimum values.

Find the value of x for which the function (x^(3) - 3x + 4) is maximum or minimum.

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the cost function C(x)= x^(3)-5x^(2) + 3x+1 , then find the marginal cost function.

If x lies in first quadrant, find the maximum and minimum values of the function 4 sin x+3 cos x .

For the function f(x)=x+1/x x=1 is a point of maximum (b) x=-1 is a point of minimum (c) maximum value > minimum value (d) maximum value < minimum value

If f(x)=3x^4-5x^2+9, find f(x-1) .