Home
Class 12
MATHS
Slope of tangent to the curve y=2e^(x)si...

Slope of tangent to the curve `y=2e^(x)sin((pi)/(4)-(x)/(2))cos((pi)/(4)-(x)/(2))`, where `0le xle2pi` is minimum at x =

A

0

B

`pi`

C

`2pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum slope of the tangent to the curve given by the function \( y = 2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \) for \( 0 \leq x \leq 2\pi \), we will follow these steps: ### Step 1: Differentiate the function To find the slope of the tangent, we need to compute the derivative \( \frac{dy}{dx} \). Given: \[ y = 2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \] Using the product rule and the chain rule, we differentiate: \[ \frac{dy}{dx} = 2e^x \left( \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) + e^x \left( \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \cdot \left(-\frac{1}{2}\sin\left(\frac{\pi}{4} - \frac{x}{2}\right)\right) + \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cdot \left(-\frac{1}{2}\cos\left(\frac{\pi}{4} - \frac{x}{2}\right)\right) \right) \right) \] ### Step 2: Set the derivative to zero To find the critical points where the slope is minimum, we set \( \frac{dy}{dx} = 0 \): \[ 2e^x \left( \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) + e^x \left( -\frac{1}{2}\sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) - \frac{1}{2}\cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \right) \right) = 0 \] This simplifies to: \[ -2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) = 0 \] ### Step 3: Solve for x From the equation \( -2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) = 0 \), we find: \[ \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) = 0 \] This occurs when: \[ \frac{\pi}{4} - \frac{x}{2} = n\pi \quad \text{for integer } n \] Solving for \( x \): \[ x = \frac{\pi}{2} - 2n\pi \] ### Step 4: Evaluate critical points within the interval We need to check the values of \( x \) within the interval \( [0, 2\pi] \): - For \( n = 0 \): \( x = \frac{\pi}{2} \) - For \( n = 1 \): \( x = \frac{\pi}{2} - 2\pi \) (not in the interval) - For \( n = -1 \): \( x = \frac{\pi}{2} + 2\pi \) (not in the interval) ### Step 5: Check endpoints and critical points Now we evaluate \( \frac{dy}{dx} \) at the endpoints \( x = 0 \) and \( x = 2\pi \) and at the critical point \( x = \pi \): - At \( x = 0 \): \( \frac{dy}{dx} = 2e^0 \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = 2 \cdot 1 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 1 \) - At \( x = \pi \): \( \frac{dy}{dx} = 0 \) - At \( x = 2\pi \): \( \frac{dy}{dx} = 2e^{2\pi} \sin\left(-\frac{\pi}{4}\right)\cos\left(-\frac{\pi}{4}\right) = 2e^{2\pi} \cdot -\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = -e^{2\pi} \) ### Conclusion The minimum slope of the tangent occurs at \( x = \pi \).

To find the minimum slope of the tangent to the curve given by the function \( y = 2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) \) for \( 0 \leq x \leq 2\pi \), we will follow these steps: ### Step 1: Differentiate the function To find the slope of the tangent, we need to compute the derivative \( \frac{dy}{dx} \). Given: \[ y = 2e^x \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) \cos\left(\frac{\pi}{4} - \frac{x}{2}\right) ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

The slope of the tangent to the curve y=ln(cosx)" at "x=(3pi)/(4)" is "

The slope of normal to the curve y= sin^(2)x and x= (pi)/(4) is

The slope of the tangent to the curve y=sin^(-1) (sin x) " at " x=(3pi)/(4) is

The slope of the tangent to the curve y=cos^(-1)(cos x) " at " x=-(pi)/(4) , is

The area bounded by the curves y=sin^(-1)|sin x|and y=(sin^(-1)|sin x|)^(2)," where "0 le x le 2pi , is

Find the slope of the normal to the curve y= cos^(2) x at x = (pi)/(4)

The minimum distance between the curves y=tanx, AA x in (-(pi)/(2),(pi)/(2)) and (x-2-(pi)/(4))^(2)+y^(2)=1 is

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Find the equation of tangent to the curve x=sin3t , y=cos2t\ \ at t=pi/4

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is