Home
Class 12
MATHS
If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",...

If `f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):}` and `g'(x)=f(x), x in [1,3]`, then```

A

g(x) has no local maxima

B

g(x) has no local minima

C

g(x) has local maxima at `x=1+ln2` and local minima at x = e

D

g(x) has local minima at `x=1+ln2` and local maxima at x = e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined piecewise and then find the critical points of the function \( g(x) \) whose derivative is given by \( g'(x) = f(x) \) for \( x \in [1, 3] \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq 1 \\ 2 - e^{(x-1)} & \text{if } 1 < x \leq 2 \\ x - e & \text{if } 2 < x \leq 3 \end{cases} \] ### Step 2: Find the derivative \( g'(x) = f(x) \) We know that \( g'(x) = f(x) \). We will analyze \( f(x) \) in the intervals \( (1, 2) \) and \( (2, 3) \). ### Step 3: Analyze \( f(x) \) in the interval \( (1, 2) \) In the interval \( (1, 2) \): \[ f(x) = 2 - e^{(x-1)} \] To find the critical points, we need to find where \( f(x) = 0 \): \[ 2 - e^{(x-1)} = 0 \implies e^{(x-1)} = 2 \implies x - 1 = \ln(2) \implies x = 1 + \ln(2) \] ### Step 4: Analyze \( f(x) \) in the interval \( (2, 3) \) In the interval \( (2, 3) \): \[ f(x) = x - e \] To find the critical points, we set \( f(x) = 0 \): \[ x - e = 0 \implies x = e \] ### Step 5: Determine the nature of critical points Now we need to check the nature of the critical points \( x = 1 + \ln(2) \) and \( x = e \). 1. **At \( x = 1 + \ln(2) \)**: - For \( x < 1 + \ln(2) \), \( f(x) > 0 \) (since \( 2 - e^{(x-1)} > 0 \)). - For \( x > 1 + \ln(2) \), \( f(x) < 0 \) (since \( 2 - e^{(x-1)} < 0 \)). - Therefore, \( x = 1 + \ln(2) \) is a point of maxima. 2. **At \( x = e \)**: - For \( x < e \), \( f(x) < 0 \) (since \( x - e < 0 \)). - For \( x > e \), \( f(x) > 0 \) (since \( x - e > 0 \)). - Therefore, \( x = e \) is a point of minima. ### Conclusion The critical points are: - Maximum at \( x = 1 + \ln(2) \) - Minimum at \( x = e \)

To solve the problem, we need to analyze the function \( f(x) \) defined piecewise and then find the critical points of the function \( g(x) \) whose derivative is given by \( g'(x) = f(x) \) for \( x \in [1, 3] \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

Consider two function y=f(x) and y=g(x) defined as f(x)={{:(ax^(2)+b,,0lexle1),(bx+2b,,1ltxle3),((a-1)x+2c-3,,3ltxle4):} and" "g(x)={{:(cx+d,,0lexle2),(ax+3-c,,2ltxlt3),(x^(2)+b+1,,3gexle4):} lim_(xrarr2) (f(x))/(|g(x)|+1) exists and f is differentiable at x = 1. The value of limit will be

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):} and g(x)={:{(max{3//8t^(4)+1//2t^(3)-3//2t^(2)+1","0letlex}","0lexle1),(min{3//8t+1//32sin^(2)pit+5//8","1letlex}1","lexle2):} The function f(x),AAx in [0,2] is