Home
Class 12
MATHS
Let f be a continuous and differentiable...

Let f be a continuous and differentiable function in `(x_(1),x_(2))`. If `f(x).f'(x)ge x sqrt(1-(f(x))^(4))` and `lim_(xrarrx_(1))(f(x))^(2)=1 and lim_(xrarrx) )(f(x))^(2)=(1)/(2)`, then minimum value of `(x_(1)^(2)-x_(2)^(2))` is

A

`(pi)/(6)`

B

`(2pi)/(3)`

C

`(pi)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions and derive the minimum value of \( x_1^2 - x_2^2 \). ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We start with the inequality: \[ f(x) \cdot f'(x) \geq x \sqrt{1 - (f(x))^4} \] This implies that the product of the function and its derivative is bounded below by a term involving \( x \) and \( f(x) \). 2. **Limits of the Function**: We have the limits: \[ \lim_{x \to x_1} (f(x))^2 = 1 \quad \text{and} \quad \lim_{x \to x_2} (f(x))^2 = \frac{1}{2} \] This indicates that as \( x \) approaches \( x_1 \), \( f(x) \) approaches \( 1 \), and as \( x \) approaches \( x_2 \), \( f(x) \) approaches \( \frac{1}{\sqrt{2}} \). 3. **Deriving the Function Behavior**: From the limits, we can deduce: \[ f(x_1) = 1 \quad \text{and} \quad f(x_2) = \frac{1}{\sqrt{2}} \] 4. **Using the Inequality**: Substitute \( f(x_1) \) and \( f(x_2) \) into the inequality: - At \( x = x_1 \): \[ 1 \cdot f'(x_1) \geq x_1 \sqrt{1 - 1^4} = 0 \] This does not provide new information since \( f'(x_1) \) can be any non-negative value. - At \( x = x_2 \): \[ \frac{1}{\sqrt{2}} \cdot f'(x_2) \geq x_2 \sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^4} = x_2 \sqrt{1 - \frac{1}{4}} = x_2 \cdot \frac{\sqrt{3}}{2} \] 5. **Rearranging the Inequality**: Rearranging gives: \[ f'(x_2) \geq \frac{x_2 \sqrt{3}}{2} \cdot \frac{\sqrt{2}}{1} = \frac{x_2 \sqrt{6}}{2} \] 6. **Finding Minimum Value**: Now, we need to find the minimum value of \( x_1^2 - x_2^2 \). We can use the limits and the derived inequalities: \[ \lim_{x \to x_1} f(x)^2 = 1 \implies x_1^2 = \frac{\pi}{2} \quad \text{and} \quad \lim_{x \to x_2} f(x)^2 = \frac{1}{2} \implies x_2^2 = \frac{\pi}{6} \] 7. **Calculating the Difference**: Therefore, we have: \[ x_1^2 - x_2^2 = \frac{\pi}{2} - \frac{\pi}{6} = \frac{3\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3} \] ### Final Answer: The minimum value of \( x_1^2 - x_2^2 \) is: \[ \frac{\pi}{3} \]

To solve the problem, we need to analyze the given conditions and derive the minimum value of \( x_1^2 - x_2^2 \). ### Step-by-Step Solution: 1. **Understanding the Given Inequality**: We start with the inequality: \[ f(x) \cdot f'(x) \geq x \sqrt{1 - (f(x))^4} ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

Let f : R to R be a continuously differentiable function such that f(2) = 6 and f'(2) = 1/48 . If int_(6)^(f(x)) 4t^(3) dt = (x-2) g(x) than lim_( x to 2) g(x) is equal to

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x