Home
Class 12
MATHS
If ab=2a+3b, agt0, b gt0, then the minim...

If `ab=2a+3b, agt0, b gt0`, then the minimum value of ab is

A

12

B

24

C

`(1)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( ab \) given the equation \( ab = 2a + 3b \) with the constraints \( a > 0 \) and \( b > 0 \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the equation: \[ ab = 2a + 3b \] Rearranging gives: \[ ab - 2a - 3b = 0 \] This can be rewritten as: \[ b(a - 3) = 2a \] From this, we can express \( b \) in terms of \( a \): \[ b = \frac{2a}{a - 3} \] ### Step 2: Substitute \( b \) into \( ab \) Now substitute \( b \) back into the expression for \( ab \): \[ ab = a \cdot \frac{2a}{a - 3} = \frac{2a^2}{a - 3} \] Let \( z = ab \), so: \[ z = \frac{2a^2}{a - 3} \] ### Step 3: Differentiate to Find Critical Points To find the minimum value, we need to differentiate \( z \) with respect to \( a \): \[ \frac{dz}{da} = \frac{(2a^2)'(a - 3) - (2a^2)(a - 3)'}{(a - 3)^2} \] Calculating the derivatives: \[ (2a^2)' = 4a \quad \text{and} \quad (a - 3)' = 1 \] Thus, we have: \[ \frac{dz}{da} = \frac{4a(a - 3) - 2a^2}{(a - 3)^2} \] Simplifying the numerator: \[ = \frac{4a^2 - 12a - 2a^2}{(a - 3)^2} = \frac{2a^2 - 12a}{(a - 3)^2} \] ### Step 4: Set the Derivative to Zero Setting the derivative equal to zero to find critical points: \[ 2a^2 - 12a = 0 \] Factoring out \( 2a \): \[ 2a(a - 6) = 0 \] This gives us: \[ a = 0 \quad \text{or} \quad a = 6 \] Since \( a > 0 \), we take \( a = 6 \). ### Step 5: Find Corresponding \( b \) Now substitute \( a = 6 \) back into the equation for \( b \): \[ b = \frac{2(6)}{6 - 3} = \frac{12}{3} = 4 \] ### Step 6: Calculate Minimum Value of \( ab \) Now calculate \( ab \): \[ ab = 6 \cdot 4 = 24 \] ### Conclusion Thus, the minimum value of \( ab \) is: \[ \boxed{24} \]

To find the minimum value of \( ab \) given the equation \( ab = 2a + 3b \) with the constraints \( a > 0 \) and \( b > 0 \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the equation: \[ ab = 2a + 3b \] Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If a gt b gt0 then maximum value of (ab(a^2-b^2)sinxcosx)/(a^2sin^2x+b^2cos^2x),x in (0,pi//2) is

Let ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(2ab,1-a^2+b^2, 2a),(2b,-2a,1-a^2-b^2):}| then the minimum value of Delta is :

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

if Agt0,Bgt0 and A+B= pi/3, then the maximum value of tanA*tanB is