Home
Class 12
MATHS
Let a,b,c,d,e,f,g,h be distinct elements...

Let `a,b,c,d,e,f,g,h` be distinct elements in the set `{-7,-5,-3,-2,2,4,6,13}`. The minimum value of `(a+b+c+d)^2 + (e+ f + g + h)^2` is:(1) 30 (2) 32 ( 3) 34 ( 4) 40

A

30

B

32

C

34

D

40

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to minimize the expression \((a+b+c+d)^2 + (e+f+g+h)^2\) given that \(a, b, c, d, e, f, g, h\) are distinct elements from the set \(\{-7, -5, -3, -2, 2, 4, 6, 13\}\). ### Step 1: Define the variables Let: - \(x = a + b + c + d\) - \(y = e + f + g + h\) Since \(a, b, c, d, e, f, g, h\) are all distinct elements from the set, we have: \[ x + y = -7 - 5 - 3 - 2 + 2 + 4 + 6 + 13 = 8 \] ### Step 2: Express \(y\) in terms of \(x\) From the equation \(x + y = 8\), we can express \(y\) as: \[ y = 8 - x \] ### Step 3: Substitute \(y\) into the expression Now, we substitute \(y\) into the expression we want to minimize: \[ (x)^2 + (8 - x)^2 \] ### Step 4: Expand the expression Expanding the expression gives: \[ x^2 + (8 - x)^2 = x^2 + (64 - 16x + x^2) = 2x^2 - 16x + 64 \] ### Step 5: Simplify the expression We can simplify this to: \[ 2x^2 - 16x + 64 \] ### Step 6: Find the minimum value To find the minimum value of the quadratic expression \(2x^2 - 16x + 64\), we can complete the square or use the vertex formula. The vertex \(x\) of a parabola given by \(ax^2 + bx + c\) occurs at: \[ x = -\frac{b}{2a} = -\frac{-16}{2 \cdot 2} = \frac{16}{4} = 4 \] ### Step 7: Calculate the minimum value Now we substitute \(x = 4\) back into the expression: \[ 2(4)^2 - 16(4) + 64 = 2(16) - 64 + 64 = 32 \] ### Conclusion Thus, the minimum value of \((a+b+c+d)^2 + (e+f+g+h)^2\) is \(32\). ### Final Answer The minimum value is \(\boxed{32}\). ---

To solve the problem, we need to minimize the expression \((a+b+c+d)^2 + (e+f+g+h)^2\) given that \(a, b, c, d, e, f, g, h\) are distinct elements from the set \(\{-7, -5, -3, -2, 2, 4, 6, 13\}\). ### Step 1: Define the variables Let: - \(x = a + b + c + d\) - \(y = e + f + g + h\) Since \(a, b, c, d, e, f, g, h\) are all distinct elements from the set, we have: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos

Similar Questions

Explore conceptually related problems

Let U= {a,b,c,d,e,f,g} be the universal set and let its subsets be A = {a,b,d,e} and B = {b,e,g} Verify that : ( Auu B )' = ( A' nn B ')

Let U= {a,b,c,d,e,f,g} be the universal set and let its subsets be A = {a,b,d,e} and B = {b,e,g} Verify that : ( A nn B) ' = ( A' uu B')

If U = {a , b , c , d , e , f, g, h} , find the complements of the following sets :(i) A = {a , b , c} (ii) B = {d , e , f, g] (iii) C = {a , c , e , g} (iv) D = {f, g, h , a)

If U = {a , b , c , d , e , f, g, h} , find the complements of the following sets :(i) A = {a , b , c} (ii) B = {d , e , f, g] (iii) C = {a , c , e , g} (iv) D = {f, g, h , a)

Let a,b,c,d and e be positive real numbers such that a+b+c+d+e=15 and ab^2c^3d^4e^5=(120)^3xx50 . Then the value of a^2+b^2+c^2+d^2+e^2 is ___________.

If \ ^(n+1)C_3=2.\ \ ^n C_2\ t h e n= 3 b. 4 c. 6 d. 5

If real numbers a, b, c, d, e satisfy a+1=b + 2 = c+ 3 = d + 4 = e + 5 = a + b + c + d + e + 3 then find the value of a^2 + b^2 + c^2 + d^2 + e^2

In Figure, D E F G is a square and /_B A C=90 . Prove that (i) A G F ~ D B G (ii) A G F ~ E F C (iii) D B G ~ E F C (iv) D E^2=B D x E C

Let A = (a,b,c),B= (b,d,e) and C = (e,f,g) , verify that : A nn B = B nn A

Let A = (a,b,c),B= (b,d,e) and C = (e,f,g) , verify that : A uu B = B uu A