Home
Class 12
MATHS
lim(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3)...

`lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]` is equal to

A

`(3)/(8)`

B

`(1)/(4)`

C

`(1)/(8)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`underset(nrarroo)(lim)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)]`
`" "=underset(nrarroo)(lim)[(n^(2))/((n+0)^(3))+(n^(2))/((n+2)^(3))+(n^(2))/((n+2)^(3))+...+(n^(2))/((n+n)^(3))]`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(n^(2))/((n+r)^(3))`
`" "=underset(nrarroo)(lim)sum_(r=0)^(n)(1)/(n)(1)/((1+(r)/(n)))`
`" "=int_(0)^(1)(dx)/((1+x^(3)))=[-(1)/(2(1+x)^(2))]_(0)^(1)`
`" "=-(1)/(2)((1)/(4)-1)=(3)/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to: