Home
Class 12
MATHS
The value of lim(n rarroo) sum(r=1)^(n)(...

The value of `lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) ` is equal to

A

`2ln(sqrt2-1)`

B

`4 ln (sqrt2-1)`

C

`4 ln (sqrt2+1)`

D

`ln sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{\sin\left(\frac{(n+r)\pi}{4n}\right)} \cdot \frac{\pi}{n}, \] we will follow these steps: ### Step 1: Rewrite the expression inside the limit We start by rewriting the sine term in the summation: \[ \sin\left(\frac{(n+r)\pi}{4n}\right) = \sin\left(\frac{n\pi}{4n} + \frac{r\pi}{4n}\right) = \sin\left(\frac{\pi}{4} + \frac{r\pi}{4n}\right). \] ### Step 2: Use the sine addition formula Using the sine addition formula, we have: \[ \sin\left(\frac{\pi}{4} + x\right) = \sin\left(\frac{\pi}{4}\right)\cos(x) + \cos\left(\frac{\pi}{4}\right)\sin(x), \] where \(x = \frac{r\pi}{4n}\). Thus, \[ \sin\left(\frac{\pi}{4} + \frac{r\pi}{4n}\right) = \frac{\sqrt{2}}{2}\cos\left(\frac{r\pi}{4n}\right) + \frac{\sqrt{2}}{2}\sin\left(\frac{r\pi}{4n}\right). \] ### Step 3: Simplify the summation Now we can rewrite the summation: \[ \sum_{r=1}^{n} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{r\pi}{4n}\right)} \cdot \frac{\pi}{n}. \] As \(n \to \infty\), \(\frac{r}{n} \to x\) where \(x\) varies from \(0\) to \(1\). Thus, we can replace the summation with an integral: \[ \int_0^1 \frac{\pi}{\sin\left(\frac{\pi}{4} + \frac{\pi}{4}x\right)} \, dx. \] ### Step 4: Evaluate the integral Now we need to evaluate the integral: \[ \pi \int_0^1 \frac{1}{\sin\left(\frac{\pi}{4} + \frac{\pi}{4}x\right)} \, dx. \] Using the substitution \(u = \frac{\pi}{4} + \frac{\pi}{4}x\), we have \(du = \frac{\pi}{4}dx\) or \(dx = \frac{4}{\pi}du\). The limits change accordingly: - When \(x = 0\), \(u = \frac{\pi}{4}\). - When \(x = 1\), \(u = \frac{\pi}{2}\). Thus, the integral becomes: \[ \pi \cdot \frac{4}{\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin(u)} \, du = 4 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc(u) \, du. \] ### Step 5: Evaluate the integral of cosecant The integral of \(\csc(u)\) is given by: \[ \int \csc(u) \, du = \ln\left|\tan\left(\frac{u}{2}\right)\right| + C. \] Thus, we evaluate: \[ 4 \left[ \ln\left|\tan\left(\frac{u}{2}\right)\right| \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}. \] Calculating the limits: - At \(u = \frac{\pi}{2}\), \(\tan\left(\frac{\pi}{4}\right) = 1\), so \(\ln(1) = 0\). - At \(u = \frac{\pi}{4}\), \(\tan\left(\frac{\pi}{8}\right)\). Thus, we have: \[ 4 \left(0 - \ln\left(\tan\left(\frac{\pi}{8}\right)\right)\right) = -4 \ln\left(\tan\left(\frac{\pi}{8}\right)\right). \] ### Final Result Using the identity \(\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1\), we find: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{\sin\left(\frac{(n+r)\pi}{4n}\right)} \cdot \frac{\pi}{n} = -4 \ln(\sqrt{2} - 1). \]

To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{\sin\left(\frac{(n+r)\pi}{4n}\right)} \cdot \frac{\pi}{n}, \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to