Home
Class 12
MATHS
lim(nrarroo) sum(k=1)^(n)(k^(1//a{n^(a-(...

`lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1))` is equal to

A

1

B

2

C

43467

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the given summation, we will follow a systematic approach. Let's break it down step by step. ### Step 1: Write the limit and summation We start with the expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} \left( n^{a - \frac{1}{a}} + k^{a - \frac{1}{a}} \right)}{n^{a + 1}} \] ### Step 2: Simplify the expression We can separate the terms in the numerator: \[ = \lim_{n \to \infty} \sum_{k=1}^{n} \left( \frac{k^{\frac{1}{a}} n^{a - \frac{1}{a}}}{n^{a + 1}} + \frac{k^{\frac{1}{a}} k^{a - \frac{1}{a}}}{n^{a + 1}} \right) \] This simplifies to: \[ = \lim_{n \to \infty} \sum_{k=1}^{n} \left( \frac{k^{\frac{1}{a}}}{n^{1 + \frac{1}{a}}} + \frac{k^{a}}{n^{a + 1}} \right) \] ### Step 3: Factor out constants We can factor out the constants from the summation: \[ = \lim_{n \to \infty} \left( \frac{1}{n^{1 + \frac{1}{a}}} \sum_{k=1}^{n} k^{\frac{1}{a}} + \frac{1}{n^{a + 1}} \sum_{k=1}^{n} k^{a} \right) \] ### Step 4: Evaluate the sums Using the formula for the sum of powers: \[ \sum_{k=1}^{n} k^p \approx \frac{n^{p+1}}{p+1} \quad \text{as } n \to \infty \] we can write: \[ \sum_{k=1}^{n} k^{\frac{1}{a}} \approx \frac{n^{1 + \frac{1}{a}}}{1 + \frac{1}{a}} \quad \text{and} \quad \sum_{k=1}^{n} k^{a} \approx \frac{n^{a + 1}}{a + 1} \] ### Step 5: Substitute back into the limit Substituting these approximations back into the limit gives: \[ = \lim_{n \to \infty} \left( \frac{1}{n^{1 + \frac{1}{a}}} \cdot \frac{n^{1 + \frac{1}{a}}}{1 + \frac{1}{a}} + \frac{1}{n^{a + 1}} \cdot \frac{n^{a + 1}}{a + 1} \right) \] This simplifies to: \[ = \lim_{n \to \infty} \left( \frac{1}{1 + \frac{1}{a}} + \frac{1}{a + 1} \right) \] ### Step 6: Combine the results Now we can combine the results: \[ = \frac{1}{1 + \frac{1}{a}} + \frac{1}{a + 1} = \frac{a}{a + 1} + \frac{1}{a + 1} = \frac{a + 1}{a + 1} = 1 \] ### Final Result Thus, we find that: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} \left( n^{a - \frac{1}{a}} + k^{a - \frac{1}{a}} \right)}{n^{a + 1}} = 1 \]

To solve the limit of the given summation, we will follow a systematic approach. Let's break it down step by step. ### Step 1: Write the limit and summation We start with the expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{\frac{1}{a}} \left( n^{a - \frac{1}{a}} + k^{a - \frac{1}{a}} \right)}{n^{a + 1}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

lim_(nrarroo) sum_(r=1)^n 1/n e^(r/n) is (A) 1-e (B) e-1 (C) e (D) e+1

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to