Home
Class 12
MATHS
The number of solution of the equation i...

The number of solution of the equation `int_(-2)^(1)|cos x|dx=0,0ltxlt(pi)/(2)`, is

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

`int_(-2)^(x)|cosx|dx=int_(-2)^(-pi//2)|cos x|dx+int_(-pi//2)^(x)|cos x|dx`
`" "=int_(-2)^(-pi//2)-cosxdx+int_(-pi//2)^(x)cosxdx`
`" "1-sin 2+sinx+1`
`therefore" "int_(-2)^(x)|cos x|dx=0`
`rArr" "-1sin2+sinx+1=0`
`rArr" "sinx=sin2-2lt-1`
`therefore" No solution in "(0,(pi)/(2)).`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(50pi)| cos x|dx=

int_(0)^(pi/2) cos 2x dx

If x in [0,2pi] then the number of solution of the equation 81^(sin^2x)+81^(cos^2x)=30

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

Evaluate : int_(0)^(pi) |cos x| dx

Solution of the differential equation cosxdy=y(sinx-y)dx, 0ltxlt(pi)/(2) is

int_(0)^(pi//2) cos 3x dx

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) The number of solution (s) of the equation f (x) =x ^(3) in [0, 2pi] be: